Register Allocation

March 19, 2001
CS 132: Compiler Design

Review: Liveness

• A variable is said to be live at a program point if its contents may affect the result of the program after that point.
 - And said to be dead otherwise.
 - True liveness is an undecidable property

• Approximation: variable is (statically) dead if its current value can never be read
 - And said to be (statically) live otherwise.

Review: Liveness Analysis

• For each instruction s:
 - Define $\text{def}(s)$ to be variables potentially modified by s.
 - Define $\text{use}(s)$ to be the variables accessed by s.
 - Solve for $\text{livein}(s)$ and $\text{liveout}(s)$ (e.g., by iteration)

\[
\text{livein}(s) = \text{use}(s) \cup (\text{liveout}(s) \setminus \text{def}(s))
\]
\[
\text{liveout}(s) = \bigcup_{p \in \text{succ}(s)} \text{livein}(p)
\]
\[
\text{liveout}\text{(terminal node)} = \emptyset
\]

Register Allocation

• Assigns temporaries to machine locations
 - Input: Assembly code using arbitrary number of temporaries.
 - Output: Equivalent code using only machine registers.

• Note: For the rest of the day I will refer to machine registers as temporaries as well
 - These are assigned to themselves by the allocator

• Note: Sometimes a distinction is made between register allocation (which temporaries are stored in registers) and register assignment (which registers these are).
 - Today’s algorithm does these simultaneously
Interference Graph

- Temporaries are said to interfere if they cannot be stored in the same machine location.

- The interference graph for a piece of code is defined as follows:
 - Nodes: the temporaries and machine registers used by the code
 - Edges: there is an edge between every pair of nodes that interfere.

Graph Coloring

- Definitions:
 - A coloring of an undirected graph is an assignment of "colors" to nodes such that no two adjacent nodes have the same color.
 - A k-coloring of a graph is a coloring that uses at most k colors.

- Given a graph and k, is there a k-coloring of this graph? (And if so, what is it?)
 - Called the graph coloring problem

Graph Coloring Register Allocation

- Elegant observation (Chaitin):
 - The result of a correct register allocation would be an assignment of registers to temporaries such that no interfering temporaries are assigned the same register.

 - This is exactly the graph coloring problem applied to the interference graph
 - Each color corresponds to a machine register!

Building a Graph-Coloring Register Allocator

- Step 1: Build the interference graph.
- Step 2: Find a k-coloring, where k is the number of available machine registers.

- Problems:
 - The graph coloring problem is NP-complete (k>2)
 - What if the graph isn't k-colorable?
Solutions

- Although graph coloring is NP-complete, there are reasonable heuristics.
- If the heuristic fails to k-color the graph, we can try finding equivalent code with an easier interference graph.

Spilling

- A temporary that is stored in memory (e.g., the stack frame) instead of a register is said to have been spilled.
- Spilling transformation:
 - Choose a problematic temporary t and a memory location M for it.
 - Rewrite each use of t to first load from M into a fresh temporary, and to use this temporary instead.
 - Rewrite each definition of t to write to a fresh temporary and to store it into M.
- Gets rid of the temporary t, at the cost of adding new temporaries (with very short live ranges).

Spilling Example

\[
\begin{align*}
a & \leftarrow x+1 \\
b & \leftarrow x+2 \\
x & \leftarrow a+b \\
t1 & \leftarrow *(%fp-8) \\
a & \leftarrow t1+1 \\
t2 & \leftarrow *(%fp-8) \\
b & \leftarrow t2+2 \\
t3 & \leftarrow a+b \\
*(%fp-8) & \leftarrow t3 \\
\end{align*}
\]

spill x

\[
\begin{align*}
%r1 & \leftarrow x+1 \\
%r2 & \leftarrow x+2 \\
x & \leftarrow %r2+x \\
t1 & \leftarrow *(%fp-8) \\
%r1 & \leftarrow t1+1 \\
t2 & \leftarrow *(%fp-8) \\
%r2 & \leftarrow t2+2 \\
t3 & \leftarrow %r2+t3 \\
*(%fp-8) & \leftarrow t4 \\
\end{align*}
\]

spill x
Spilling Example

\[
\begin{align*}
\%r1 & \leftarrow x+1 \\
\%r2 & \leftarrow x+2 \\
x & \leftarrow \%r2+x
\end{align*}
\]

\[
\begin{align*}
t1 & \leftarrow *(\%fp-8) \\
\%r1 & \leftarrow t1 + 1 \\
\%r2 & \leftarrow t1 + 2 \\
t4 & \leftarrow \%r2 + t1 \\
*(\%fp-8) & \leftarrow t4
\end{align*}
\]

Interference

• Which temporaries interfere?

\[
\begin{align*}
a & \leftarrow x+1 \\
b & \leftarrow a+x \\
\text{return } b
\end{align*}
\]

Interference Graph Construction

• Algorithm (first try).
 - Put edges between any pair of temporaries that appear simultaneously in a \textit{livein} (or \textit{liveout}) set for some program point.

• Problem:
 - This is insufficient (and inefficient if implemented naively)
Interference

• Which temporaries interfere?

\[
\begin{align*}
a &\leftarrow x+y \\
b &\leftarrow f(x,3) \\
c &\leftarrow a+1
\end{align*}
\]

Interference Graph Construction

• Algorithm (second try).
 – For each instruction \(s \), put edges between every node in \(\text{def}(s) \) and every temporary in \(\text{liveout}(s) \)
 • Ignore self-loops.

• Problem:
 – Correct, but now overly conservative.

Interference

• Which temporaries interfere?

\[
\begin{align*}
a &\leftarrow x+y \\
b &\leftarrow a \\
c &\leftarrow a+x \\
d &\leftarrow b+c \\
\text{return } d
\end{align*}
\]

Interference

• Which temporaries interfere?

\[
\begin{align*}
a &\leftarrow x+y \\
b &\leftarrow a \\
c &\leftarrow a+x \\
b &\leftarrow b+1 \\
d &\leftarrow a+c \\
\text{return } d
\end{align*}
\]
Interference Graph Construction

- Final algorithm: For each instruction s:
 - If s is a move instruction $c \leftarrow a$ then add edges between c and every member of $\text{liveout}(s)$ except a.
 - Otherwise, add an edge between every node in $\text{def}(s)$ and every temporary in $\text{liveout}(s)$.

Graph Coloring Algorithms

- Naive algorithm for k-coloring a graph
 - Put the graph nodes into a sequence
 - Iterate through this sequence, assigning each node a color that does not introduce an immediate conflict in the graph.
 - i.e., choose a color different from that of any neighbors who have already been assigned colors.
 - Backtrack when we reach a node that cannot be assigned a color
 - i.e., because it has neighbors of every possible color.

Graph Coloring Algorithms

- Observation
 - Let G be the graph to be k-colored.
 - Assume that node n has degree $< k$.
 - Let G' be the graph G after n and adjacent edges are removed
 - Then G' is k-colorable if and only if G is k-colorable! (Why?)

- Simplification
 - Removal of low-degree ($< k$) nodes from interference graph.
 - Note: Removing a node decreases the degrees of its neighbors, possibly creating more low-degree nodes.

Chaitin's Heuristic

- Given the graph G:
 - If G contains a node n of degree $< k$:
 - Remove it to get G'
 - Recursively color G'
 - Find a non-conflicting color for n (always possible).
 - If G contains only high-degree nodes:
 - Pick high-degree node n to be spilled
 - Remove n from the graph and recurse
 - At end, rewrite code for all spilled temporaries, and re-run register allocation (Why?)
 - (Alternative: Abort allocation as soon as first temporary is spilled; rewrite code and re-run register allocation)
Briggs' Optimistic Coloring

- The following graph can be 2-colored, but Chaitin's algorithm will spill one of the temporaries.

![Graph diagram]

- Observation: Just because a node has many neighbors doesn't mean it can't be colored.
 - If several neighbors turn out to have the same color, the node doesn't need to be spilled.

Briggs' Optimistic Coloring

- **Simplify** routine builds a stack of nodes from graph G.
 - If G contains a node n of degree $< k$:
 - Put n onto the stack, remove it from the graph, and recurse
 - If G contains only high-degree nodes:
 - Pick high-degree node n (spill candidate)
 - Put n onto the stack, remove it from the graph, and recurse
- **Select** routine pops the nodes of the stack and assigns them colors in order.
 - Only mark node to be spilled if its neighbors do use all the available colors.
 - At end, if any nodes must be be spilled, rewrite graph and re-run the register allocator.

Spilling Heuristics

- What are good temporaries to spill?
 - Temporaries that don't appear much in the code
 - To minimize size penalty of spill-code
 - Temporaries that aren't used much at run-time
 - To minimize time penalty of spill-code
 - Temporaries that interfere with many nodes
 - To maximize the effect of their removal on the interference graph
 - NB: Never want to spill temporaries introduced by spill code!