Bottom-Up Parsing

CS 132: Compiler Design
January 29, 2001

Review: Predictive Parsing

Prediction Stack	**Input Stream**	**Action**
S	a a b b	Predict $S \rightarrow aB$
a B	a a b b	Match
B	a b b	Predict $B \rightarrow aBb$
a B b	a b b	Match
B b	b b	Predict $B \rightarrow b$
b b	b b	Match
b	b	Match

Success

$S \rightarrow aB$

$B \rightarrow b \mid aBb$
What to Predict?

• Assume the current prediction is $A\beta$, the next input symbol is t, and $A \rightarrow \alpha_1 \mid \ldots \mid \alpha_n$
• New prediction will be on of $\alpha_1\beta, \ldots, \alpha_n\beta$
• So,
 - if $t \in \text{First}(\alpha_1\beta)$ then predict $A \rightarrow \alpha_1$
 - if $t \in \text{First}(\alpha_i\beta)$ then predict $A \rightarrow \alpha_i$, and so on.
• A grammar is LL(1) if we always get a unique prediction (i.e., these sets are always disjoint).
 - Would prefer to avoid computing First sets at run-time
 • But in general these depend on β, which is only known during parsing
 • How can we tell statically whether a grammar is LL(1)?

Static Predictions

• Consider the sets $\text{First}(\alpha_1\beta), \ldots, \text{First}(\alpha_n\beta)$
 - $\text{First}(\alpha_i\beta) = \text{First}(\alpha_i)$ if α_i is not nullable
 - In an LL(1) grammar, at most one α_i can be nullable
 • Otherwise prediction is not unique
 • Hence parse tree is not unique and grammar is ambiguous.
 - So there's at most one set $\text{First}(\alpha_m\beta)$ that we can't know when building the parser (the one where α_m is nullable)

• What do we know about $\text{First}(\alpha_m\beta)$?
Static Predictions

- Assume α_m is nullable. Then
 - $\text{First}(\alpha_m \beta) = \text{First}(\alpha_m) \cup \text{First}(\beta)$
 - $\text{First}(\beta) \subseteq \text{Follow}(A)$ [since $S \rightarrow^* A\beta$]
- Hence $\text{First}(\alpha_m \beta) \subseteq \text{First}(\alpha_m) \cup \text{Follow}(A)$
 - Idea: use this as an approximation.

- New algorithm: Define

 $P_i := \text{First}(\alpha_i)$ if α_i is not nullable
 $P_i := \text{First}(\alpha_i) \cup \text{Follow}(A)$ if α_i is nullable

 - These sets can be computed
 - Choose the production $A \rightarrow \alpha_i$ if lookahead token $t \in P_i$.

Building a Predictive Parser

- Given $A \rightarrow \alpha_1 | \ldots | \alpha_n$, define the function:

  ```
  fun A() =
  if (!tok \in \text{FIRST}(\alpha_1)) or
  (\text{nullable}(\alpha_1) and (!tok \in \text{FOLLOW}(A)) then
  ...match $\alpha_1$ against input stream...
  else if (!tok \in \text{FIRST}(\alpha_2)) or
  (\text{nullable}(\alpha_2) and (!tok \in \text{FOLLOW}(A)) then
  ...match $\alpha_2$ against input stream...
  ...
  else if (!tok \in \text{FIRST}(\alpha_n)) or
  (\text{nullable}(\alpha_n) and (!tok \in \text{FOLLOW}(A)) then
  ...match $\alpha_n$ against input stream...
  else ERROR
  ```
Is a Grammar LL(1) ?

• A grammar is Strong-LL(1) if and only if the following conditions hold for any pair of distinct productions $A \rightarrow \alpha_1$ and $A \rightarrow \alpha_2$.

1. First(α_1) and First(α_2) are disjoint.
2. At most one of α_1 and α_2 are nullable.
3. If α_1 is nullable, then First(α_2) is disjoint from Follow(A).

• Theorem
 - A grammar is LL(1) if and only if it is Strong-LL(1).

Bottom-Up Parsing

• Also called shift-reduce parsing.
• More general than top-down (predictive) parsing.
 - Handles non-LL(1) grammars.
• However, also more complex
 - Impractical to write a shift-reduce parser by hand
 - Implementations generally use parser generators
Shift-Reduce Example

\[
\begin{align*}
S & \rightarrow E \\
E & \rightarrow (E) \mid E' \mid E' + E \\
E' & \rightarrow \text{int} \ E' \mid \text{int}
\end{align*}
\]

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input Stream</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>int</td>
<td>int * int + int $</td>
<td>Shift</td>
</tr>
<tr>
<td>int *</td>
<td>int * int + int $</td>
<td>Shift</td>
</tr>
<tr>
<td>int * int</td>
<td>int + int $</td>
<td>Shift</td>
</tr>
<tr>
<td>int * E'</td>
<td>+ int $</td>
<td>Reduce E' \rightarrow int</td>
</tr>
<tr>
<td>E'</td>
<td>+ int $</td>
<td>Shift</td>
</tr>
<tr>
<td>E' +</td>
<td>int $</td>
<td>Shift</td>
</tr>
<tr>
<td>E' + int</td>
<td>$</td>
<td>Reduce E' \rightarrow int</td>
</tr>
<tr>
<td>E' + E'</td>
<td>$</td>
<td>Reduce E \rightarrow E'</td>
</tr>
<tr>
<td>E' + E</td>
<td>$</td>
<td>Reduce E \rightarrow E' + E</td>
</tr>
<tr>
<td>E</td>
<td>$</td>
<td>Shift</td>
</tr>
<tr>
<td>E $</td>
<td>$</td>
<td>Reduce S \rightarrow E $</td>
</tr>
<tr>
<td>S</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rightmost Reductions

- The derivation on the previous slide is a rightmost derivation, constructed in reverse order.
Why Didn't We Get Stuck?

\[
\begin{align*}
S & \rightarrow E \$ \\
E & \rightarrow (E) \mid E' \mid E' + E \\
E' & \rightarrow \text{int} * E' \mid \text{int}
\end{align*}
\]

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input Stream</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>int</td>
<td>int * int + int</td>
<td>Shift</td>
</tr>
<tr>
<td>int</td>
<td>* int + int</td>
<td>Reduce</td>
</tr>
<tr>
<td>E'</td>
<td>* int + int</td>
<td>...</td>
</tr>
</tbody>
</table>

Handles

- We want to reduce only when the resulting sentential form can still be reduced to the start symbol \(S\).
- A handle is a production \(B \rightarrow \beta\) and a position in a sentential form \(\alpha\beta\|w\) (where \(w\) contains only nonterminals) such that \(S \rightarrow^* \alpha\beta\|w \rightarrow \alpha\beta\|w\) by a rightmost derivation.
- "Algorithm" for shift-reduce parsing:
 1. if there is no handle on top of the stack, shift
 2. if there is a handle on top of the stack, reduce.
- Because we want a rightmost derivation, sufficient to look for handles only on top of the stack.
Detecting Handles

• Just because the RHS of a production occurs on the stack doesn't mean it is a handle.
 – Necessary, but not sufficient condition.
 – Fact: if the grammar is unambiguous then every sentential form has at most one handle.

Viable Prefixes

• A viable prefix is a string $\alpha \beta$ such that
 \[S \rightarrow^+ \alpha B \rightarrow \alpha \beta w \]
 is a rightmost derivation for some w (where w contains only nonterminals).
• Facts about viable prefixes:
 – If the parser's stack contains a viable prefix then no error can have been detected yet.
 – If we can find a viable prefix then we might have a handle.
Detecting Viable Prefixes

• What does a viable prefix look like?
 – Contains bits of the right-hand sides of rewrite rules, followed by the complete right-hand side of a rewrite rule.
• How can we detect viable prefixes?
 – The viable prefixes of a CFG form a regular language!
 – This is called the characteristic language of the grammar.

Items

• An LR(0) item (or just item) is a production rule from a grammar with a new symbol "." somewhere on the right-hand side.

\[
\begin{align*}
E & \rightarrow . \ (\ E) \\
E & \rightarrow (. \ E) \\
E & \rightarrow (\ E .) \\
E & \rightarrow (\ E)
\end{align*}
\]

• Important: If the grammar already has "." as a terminal symbol, choose some other marker
Intuition about Items

- An item like $E \rightarrow \cdot (E)$ means that expect to see input matching (E)

- An item like $E \rightarrow (\cdot E)$ means that we have seen (and are expecting input matching E) to follow.

- An item like $E \rightarrow (E)\cdot$ means that we have just seen input that can be reduced to E.

Recognizing Viable Prefixes

Algorithm for constructing an NFA:
1. Add a dummy production $S' \rightarrow SS$ to the grammar, and make S' the start symbol.
2. The NFA states are the items of the grammar.
3. For each item $E \rightarrow \alpha . z\beta$ add an edge labeled z from this item to $E \rightarrow \alpha z.\beta$ (where z is a terminal or a nonterminal)
4. For each item $E \rightarrow \alpha . x\beta$ and rule $x \rightarrow \gamma$, add an ε-edge from this item to $x \rightarrow \gamma$
NFA Example: LR(0)

Corresponding DFA
LR(0) Parsing Algorithm

• Let α be the current stack.
 - If α is simply S' then we're done.
 - Otherwise, run the DFA on α (the stack).
 • If it rejects, we've detected an error.
 • If the resulting state contains an item $E \rightarrow \alpha$ then reduce, and repeat.
 • If the resulting state contains an item with . in the middle, then shift, and repeat.

• A grammar is LR(0) if this algorithm is deterministic.

A Non-LR(0) Grammar

$$
\begin{align*}
S & \rightarrow E \$
\end{align*}
$$
$$
\begin{align*}
E & \rightarrow T+E \mid T \\
T & \rightarrow x
\end{align*}
$$
LR(0) DFA

SLR(1) Algorithm

- Uses the same LR(0) automaton, but parsing differs.
- Let α be the current stack and t the next input token.
 - If we've reduced the entire input to the start symbol we're done.
 - Otherwise, run the DFA on α (the stack).
 - If it rejects, we've detected an error.
 - If the resulting state contains an item $E \rightarrow \alpha.$ and $t \in \text{Follow}(E)$ then reduce, and repeat.
 - If the resulting state contains an item containing $\cdot t$ then shift, and repeat.
 - Otherwise, an error has been detected
- A grammar is SLR(1) if this algorithm is deterministic.
DFA: SLR(1)

S → E$
E → T+ E
E → T
T → .x

E → T+. E
E → T+E
E → T
T → .x

T → x

Follow(S) = {$}
Follow(E) = {$}
Follow(T) = ($,+)

A Non-SLR(1) Grammar

S' → S$
S → V = E | E
E → V
V → x | *E
DFA: not SLR(1)

S' → S.$
S → V=E | E
E → V
V → x | *E

Follow(S) = {$}
Follow(E) = {$,=}
Follow(V) = {$,=}

LR(1) Parsing

• An LR(1) item is a pair consisting of an LR(0)-item and a terminal symbol.

• An item like [E→(.E) , a] means that we have seen (and are expecting input matching E) a to follow.

• An item like [E→(E) . , a] means that we have just seen input that should be reduced to E if the next input token is a.
LR(1) Automaton

• Algorithm for NFA construction:
 1. Add a dummy production $S' \rightarrow S\$$ to the grammar, and make S' the start symbol.
 2. The states are the LR(1) items of the grammar.
 3. For each item $[E \rightarrow \alpha \cdot z\beta, a]$ add an edge labeled z from this item to $[E \rightarrow \alpha z \cdot \beta, a]$ (where z is a terminal or nonterminal).
 4. For each item $[E \rightarrow \alpha \cdot X\beta, a]$ and rule $X \rightarrow \gamma$ and terminal $b \in \text{First}(\beta a)$ add an ϵ-edge from this item to $[X \rightarrow \gamma, b]$.
 5. The start state is $[S' \rightarrow \cdot S, \$$]

LR(1) Algorithm

• Let α be the current stack and t the next input token.
 - If we've reduced the entire input to the start symbol: success.
 - Otherwise, run the DFA on α (the stack)
 • If it rejects, we've detected an error.
 • If the resulting state contains an item $[E \rightarrow \alpha \cdot , t]$ then reduce, and repeat.
 • If the resulting state contains an item containing $\cdot t$ then shift, and repeat.
 • Otherwise, an error has been detected

• A grammar is LR(1) if this algorithm is deterministic.
DFA: LR(1)

SLR(1) vs. LR(1)

- SLR(1)
 - Advantage: 100's instead of 1000's of states
- LR(1)
 - Advantage: more powerful; every SLR(1) grammar is also LR(1) but not vice versa.
LALR(1)

• Look-Ahead LR(1)
 – Take the LR(1) automaton and merge all states that contain the same sets of LR(0) items
 – i.e., merge LR(1) states that differ only in the lookahead tokens.

• Advantages
 – Size of LR(0) or SLR(1) automata
 – Includes most of the LR(1) grammars