MPI Scatter/Gather

Gather:
Used to collect "rows" of an array

```c
MPI_Gather(void* sendbuf,
           int sendcount,
           MPI_Datatype sendtype,
           void* recvbuf,
           int recvcount,
           MPI_Datatype recvtype,
           int root,
           MPI_Comm comm)
```

The outcome is as if each of the n processes in the group (including the root process) had executed a call to

- `MPI_Send(sendbuf, sendcount, sendtype, root, ...)`.
- and the root had executed n calls to

```
MPI_Recv(recvbuf+i(recvcount-recvtype), recvcount, recvtype, i, ...),
```

where `recvextent(recvtype)` is the type extent obtained from a call to

`MPI_Type_extent()`.

Gather Example

```
Example: Array of n arrays

// Initialize arrays...
int i, j;

// Gather... (omitted)

// Now array[i] contains the i-th row of all the received arrays.
```

Scatter:
Used to distribute "rows" of an array

```c
MPI_Scatter(void* sendbuf,
           int sendcount,
           MPI_Datatype sendtype,
           void* recvbuf,
           int recvcount,
           MPI_Datatype recvtype,
           int root,
           MPI_Comm comm)
```

The outcome is as if the root executed n send operations,

- `MPI_Send(sendbuf+i(sendcount-extent(sendtype)), sendcount, sendtype, i, ...)`.
- and each process executed a receive,

```
MPI_Recv(recvbuf, recvcount, recvtype, root, ...),
```

Scatter Example

```
Example: Array of n arrays

// Initialize arrays...
int i, j;

// Scatter... (omitted)

// Now array[i] contains the i-th row of the received array.
```
Vector Variants

- The Vector Variants allow the gathered/scattered sub-arrays to be of different sizes, by specifying an array of lengths of the sizes. They also allow there to be "gaps" (or "stride") by making the displacements explicit.

MPI_Gather

void* sendbuf, int sendcount, MPI_Datatype sendtype, void* recvbuf, int *recvcounts, int *displs,
MPI_Datatype recvtype, int root, MPI_Comm comm)

MPI_Scatter

void* sendbuf, int *sendcounts, int *displs, MPI_Datatype sendtype, void* recvbuf, int recvcount,
MPI_Datatype recvtype, int root, MPI_Comm comm)

All Variants

- The all variants distribute the results of a gather to all processors in the communicator:

MPI_Allgather

void* sendbuf, int sendcount, MPI_Datatype sendtype, void* recvbuf, int recvcount, MPI_Datatype recvtype, MPI_Comm comm)

MPI_Alltoall

void* sendbuf, int sendcount, MPI_Datatype sendtype, void* recvbuf, int recvcount, MPI_Datatype recvtype, MPI_Comm comm)

PVM vs. MPI

Jack Dongarra

Distinguished Professor, University of Tennessee
Distinguished Scientist, Oak Ridge National Laboratory
Also known for netlib, lapack, etc. Tutorial presentation:
http://www.netlib.org/utk/people/jdongarra/Presentations.html
PVM vs. MPI

- MPI = Message-Passing Interface
 - SPMD (Single program, multiple data)
 - Each node runs the same program
 - The program “just exists”, it is not spawned explicitly
- PVM = Parallel Virtual Machine
 - “MPMD” (Multiple program, multiple data)
 - Processes are explicitly spawned
 - Processes are assigned to nodes in separate layer, possibly multiple per node

PVM

- Can be used for heterogeneous network
- Arbitrary topology
- Messages can cross outside of host boundaries.
- Explicit packing and unpacking of messages required in code
- Fault tolerance features
- PVM came before MPI.
- Lower level, but more flexible

PVM

- In PVM daemon processes must be resident on nodes prior to spawning PVM processes there.
- Upon command, the daemon launches the process.
- The PVM host file identifies participating nodes, or they can be added manually from the command line.
- Root process is started from pvm console command-line on one host.

PVM

- Processes explicitly spawn child processes.
- Child can determine its parent.
- Processes have their own “task id”.
- Point-to-point send/receive similar to MPI.
- Tags, wildcards similar to MPI.

Code Fragment for simple PVM process (1)
(I have left out the error checking, etc.)

```c
int main(int argc, char* argv[]) {
    /* find out my task id number */
    mytid = pvm_mytid();

    /* find my parent’s task id number */
    myparent = pvm_parent();

    /* if I don’t have a parent then I am the parent */
    if (myparent == PvmNoParent) {
        /* spawn the child tasks */
        info = pvm_spawn(argv[0], (char**)0, PvmTaskDefault, (char*)0,
```

Code Fragment (2)

```c
/* I’m still the parent */
    for (i = 0; i < ntask; i++) {
        /* recv a message from any child process */
        buf = pvm_recv(-1, JOINTAG);
        info = pvm_bufinfo(buf, &len, &tag, &tid);
        info = pvm_upkint(&mydata, 1, 1);
        pvm_exit();
    }
```
Code Fragment (3)

```c
/* I'm a child */
info = pvm_init(send(PvmDataDefault);
info = pvm_pkiint(&mytid, 1, 1);
info = pvm_send(myparent, JOINTAG);
pvm_exit();
}
```


PVM groups

- Processes explicitly join and leave groups, named symbolically.
- Multicast, gather, barriers, etc. are done relative to group.
- Multicast can be into group from outside.
- Reduce operator for +, *, max, min, or user-defined.
- A process can be in multiple groups.

PVM

- Multicast to explicit receives, unlike MPI.

PVM

- For further info, examples, and on-line manual, see:

Time Decomposition

- Parallel execution time can be divided into:
 - Actual computation time +
 - Communication time
 \[t_{\text{parallel}} = t_{\text{comp}} + t_{\text{comm}} \]
 - If there are m non-parallel message steps overall, then
 \[t_{\text{comm}} = m \cdot t_{\text{message}} \]
Message Time Decomposition

- Message time can be divided into:
 - **Latency** (or start-up time) +
 - (number of data communicated) * (delay per datum)

\[t_{\text{message}} = t_{\text{startup}} + n \cdot t_{\text{datum}} \]

\(1/t_{\text{datum}}\) is often called "bandwidth", the number of data per unit time.

Some Comparative Times (Pacheco 1997)

<table>
<thead>
<tr>
<th>Machine</th>
<th>Arithmetic Op</th>
<th>Latency</th>
<th>Delay per Datum</th>
<th>Ops-latency Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cray T3D</td>
<td>0.011 ms</td>
<td>21 ms</td>
<td>0.3 ms</td>
<td>1909</td>
</tr>
<tr>
<td>IBM SP-2</td>
<td>0.0842 ms</td>
<td>35 ms</td>
<td>0.23 ms</td>
<td>8333</td>
</tr>
<tr>
<td>Ethernet</td>
<td>N/A</td>
<td>500 ms</td>
<td>8.9 ms</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Latency Hiding

- In order to prevent \(t_{\text{message}}\) from destroying any speedup due to parallelism, we can try the following:
 - While a processing element is awaiting a message, perform some computation that doesn’t require the message.
 - Note that we are really trying to hide the entire communication cost, not just the “latency” component of it.

Latency Hiding (2)

- One technique for hiding latency is “multiprogramming”:
 - On a single processor, run more than one process.
 - While one process is awaiting a message, another could be doing useful computational work.
 - This requires that process-switching be relatively efficient (e.g. using threads rather than processes).
 - The ratio of processes to processors is sometimes called the “parallel slackness.”

Parallel Time Complexity

- We assume familiarity with \(O\), \(\Omega\), and \(\Theta\) notation.

Their use is to bound the time complexity as a function of the problem size “n”.

Complexity Example

- Matrix-vector multiplication:
 - \(n \times n\) matrix
 - \(n\) element vector

- Assume \(n\) processors
 - Every processor has a row of the matrix
 - Each row is multiplied by the vector simultaneously
 - It takes \(O(n)\) to multiply one row, so \(t_{\text{comp}}(n) \in O(n)\)
Matrix-Vector Multiplication

- If the matrix first had to be distributed in order for the multiplication to take place, then the cost of distributing the rows from one processing element is $O(n^2)$, while the cost of collecting the result is $O(n)$.
- Therefore, the asymptotic parallel cost is the same as the obvious sequential cost.

Cost Optimality

- A cost-optimal algorithm is defined to be one in which the effort, as a function of problem size, is bounded by a constant times the sequential effort.
- One-shot matrix-vector multiplication is not cost-optimal for distributed memory using the technique described, whereas multiplication repeated at least n times is.

Using Graphs to Illustrate Algorithms

- Restructuring the + nodes as a tree gives us faster performance on n processors.
- Assume unit time for each operation.
- The time is proportional to path length.
- The longest path length for an n-element vector is $O(n)$, sim. to serial.
Algorithm Analysis

- The previous tree gives us $O(\log n)$ on n processors.
- Is it cost optimal?

Scaling Down Processors

- As the size of the vector grows very large, we can divide the additions up among p processors, $p << n$, adding the elements within a processor sequentially and only using the tree at the end.
- The time is dominated by the sequential adds, which is $O(n)$ for a given p.
- Is this cost optimal?

Generalization of Scale-down

- Whenever the number of operations (including communication as an operation) in the parallel case is proportional to the serial complexity, we can achieve cost optimality by scaling down.
- The general concept is captured by Brent’s Lemma.

Brent’s Lemma

- If an algorithm A entails m operations and can be done in parallel time t with some number of processors, then p processors can execute the algorithm in time $t + (m-t)/p$
- assuming added scheduling time can be ignored.

Brent’s Lemma Summarized

- $t = \text{time on some number of processors}$
- $m = \text{number of operations (unit time each)}$
- time on p processors is $\leq t + (m-t)/p$

Application of Brent’s Lemma

- To achieve cost optimality for vector inner product, use $n/(\log n)$ processors.
- Observed that product can be done in $\log n$ with arbitrarily-many processors.
- Brent’s lemma says it can be done with $n/(\log n)$ processors in $\log n + (2n-1-\log n) / (n/\log n)$
- $t + (m - t) / p$
Application of Brent's Lemma

\[
\log n + \frac{(2n-1-\log n)}{(n/\log n)} = \log n + 2 \log n - \frac{(\log n)}{n} - \frac{\log n}{n^2}
\]
which is \(O(\log n)\).

Proof of Brent's Lemma (1)

- Consider the graph of the algorithm done with some number of processors in time \(t\).
- Let \(s_i\) be the number of operations done at the \(i\)th level, i.e. at "time" \(i\).
- On \(p\) processors, we can reschedule the \(s_i\) operations in time \(\text{ceil}(s_i/p)\).

Proof of Brent's Lemma (2)

- On \(p\) processors, we can reschedule the \(s_i\) operations in time \(\text{ceil}(s_i/p)\).
- The total computation can therefore be done on \(p\) processors in time

\[
\sum(i = 1 \text{ to } t, \text{ceil}(s_i/p))
\]

Proof of Brent's Lemma (3)

\[
\sum(i = 1 \text{ to } t, \text{ceil}(s_i/p)) \leq \sum(i = 1 \text{ to } t, (s_i+p-1)/p)
\]
\[
= \sum(i = 1 \text{ to } t, s_i/p) + \sum(i = 1 \text{ to } t, p/p) - \sum(i = 1 \text{ to } t, 1/p)
\]
\[
= \frac{m}{p} + t - \frac{t}{p} = t + \frac{m-t}{p}, \text{ as advertised.}
\]

Illustration of Brent

<table>
<thead>
<tr>
<th>(s_1)</th>
<th>(s_2)</th>
<th>(s_3)</th>
<th>(s_4)</th>
<th>(s_5)</th>
<th>(s_6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Illustration of Brent for 2 processors

<table>
<thead>
<tr>
<th>(s_1)</th>
<th>(s_2)</th>
<th>(s_3)</th>
<th>(s_4)</th>
<th>(s_5)</th>
<th>(s_6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Brent's bound predicts: \(t + (m-t)/p\) = 6 + (12-6)/2 = 9
By the prefix sum problem, we mean that of computing from an array $x_0, x_1, x_2, \ldots, x_{n-1}$ the array $(x_0), (x_0+x_1), (x_0+x_1+x_2), \ldots, (x_0+x_1+x_2+\ldots+x_{n-1})$.

Can this problem be sped up using parallelism?

Is there a cost optimal version?