The PRAM Model

PRAM Model

<table>
<thead>
<tr>
<th>PRAM Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRAM Model (PP Appendix D)</td>
</tr>
<tr>
<td>- PRAM = Parallel, Random-Access Machine</td>
</tr>
<tr>
<td>- Idealized model introduced in 1978, based on theoretical RAM model</td>
</tr>
<tr>
<td>- Unbounded number of processors, to fit problem</td>
</tr>
<tr>
<td>- Shared common memory</td>
</tr>
<tr>
<td>+ local memories per processor</td>
</tr>
<tr>
<td>- Processors operate synchronously (like SIMD, with selective writing), could be loosened to SPMD with synchronization routines.</td>
</tr>
<tr>
<td>- Writing to common memory is synchronous</td>
</tr>
</tbody>
</table>

Use of PRAM Model

- Simple and elegant for some problems
- Can tell us certain things about structuring, especially for synchronous computation
- Can be simulated on parallel machines (e.g. by rescheduling, Brent’s lemma, etc.)
- At least one is being constructed

SB-PRAM at Universität des Saarlandes

Inst. of Parallel Computing

http://www-wjp.cs.uni-sb.de/sbpram/sbpram.html

Constructed a 64 physical (2048 virtual) processor machine, butterfly switch, with 4 GByte of global memory and 256 hard disks. The machine is available on the internet for free access. Software: PRAMOS, P4, Fork compiler (C extension).

Memory-Conflicts

- All processors can read or write to distinct shared memory locations in **one time step**.
- What if two processors try to **read** from the **same** memory location in the same time step?
- What if two processors try to **write** to the **same** memory location in the same time step?

PRAM Varieties

Based on Memory-Conflict Models

- **EREW** (Exclusive-Read, Exclusive-Write) Concurrent reading from or writing to a location is disallowed.
- **CREW** (Concurrent-Read, Exclusive-Write) Concurrent writing to a location is disallowed.
- **CRCW** (Concurrent-Read, Concurrent-Write) Concurrent writing to a location is allowed.
Sub-varieties of CRCW (1) indicate how conflict is resolved

- **CRCW-Common**: Concurrent writing is allowed only if it is known that all processors will be writing the *same* value (writing no value is always an option).
- **CRCW-Arbitrary**: If multiple processors attempt to write, one will be chosen arbitrarily as the winner and the others ignored.

Sub-varieties of CRCW (2) indicate how conflict is resolved

- **CRCW-Priority**: If multiple processors attempt to write, the highest-priority will be chosen as the winner and the others ignored.
- **CRCW-Sum**: If multiple processors attempt to write, the values will be summed and the sum written instead.
- **Variants on Sum**: Any binary operator (or, and, xor, min, max, product, …)

Why does it matter?

- To physically realize any approximation to a PRAM requires an understanding of the memory conflict model.
- There is a time cost to resolving memory conflicts, which varies depending on the model.

PRAM Preferences

- It is preferable to assume as little as possible for algorithms.
- Therefore, prefer
 - CREW over CRCW
 - CRCW-arbitrary over CRCW-common
 - CRCW-common over CRCW-sum
 - etc.

PRAM Algorithm Examples

- **Computing max of n numbers**:
 - O(log n) time on EREW (and by implication CREW, CRCW, …)
 - Assume the numbers are in shared memory locations 0, 1, …, n-1.
 - Even numbered processors fetch “their” numbers to their local memory (other processors are idle).
 - Even numbered processors fetch “their neighbors numbers to their local memory.
 - Even numbered processors write the max of the two numbers to “their” locations.
 - Repeat with processors divisible by 4, 8, 16, ...

PRAM Max

Essentially we have a subtrees of the prefix-sum tree (using max instead of add).
PRAM Prefix Sum

- Obviously an EREW PRAM can compute any prefix-sum type computation in $O(\log n)$.
- More processors are busy than in the max case.

Better (?) ways to do max

- Intuitively $\Omega(\log n)$ seems like a lower bound on the max computation of n numbers.
- However, a CRCW-arbitrary PRAM can do better.

CRCW-arbitrary max computation

- $O(1)$
- Using n^2 processors

CRCW-arbitrary max computation setup

- Let the data be in shared memory locations $x[0], ..., x[n-1]$.
- Use n bit locations: $b[0], ..., b[n-1]$, all set to 1 (in one step).
- $b[i]$ is associated with $x[i]$.

CRCW-arbitrary max computation

- The meaning is that, at the end of the computation, $b[i]$ will be 0 iff $x[i]$ is less than some $x[j]$, where $j \neq i$.
- So elements $x[i]$, where $b[i] = 1$, will be the max.
- In three steps: $n^2(n-1)/2$ processors each fetch, then compare a different $x[i]$ with an $x[j]$. If $x[i] < x[j]$, the processor sets $b[i]$ to 0, and vice-versa.

CRCW-arbitrary max computation

- Each processor either writes 0 or does nothing.
- If two processors write to the same location, they will both be writing the same thing.
- Therefore the CRCW-arbitrary assumption is honored.
procedure Sort(modifies A: array 1..n of integer)
for i in 1..n pardo K[i]:=0
for i in 1..n pardo
for j in 1..n pardo
for i in 1..n pardo A[K[i]]:=A[i]

How many processors?
What kind of conflict resolution?
How much effort?

In an implementation of CRCW-common, it isn’t physically realizable to have an arbitrary number of processors write to the same location at once, even if they do write the same value.

- We have replaced what would have been binary ops with a single op of arbitrary arity.
- We could implement this op as a fan-in tree, which would recover the \(\Omega(\log n) \).

\[O(n^2) \text{ processors fanning in, } \log(n^2) = \Omega(\log n) \]
Simulation Theorem
(see Cormen, et al., p706-708)

- Any CRCW-common PRAM algorithm using \(p \) processors can be simulated by an EREW PRAM with a slowdown factor of \(\log(p) \).
- The proof simulates a CRCW memory by sorting the addresses, using \(\log(p) \) time to sort on EREW.

Array Compression

- Problem:
 Given an array in shared memory and a bit vector indicating the elements to be compressed, create an array containing only those elements contiguously.

\[\text{Array: } \text{abcdefgijklmnop} \]
\[\text{Bit vector: } 1000100000011 \]
\[\text{Result array: } \text{a e i o} \]

Technique

- Use prefix-sum + indexing (parallel)
- Compute the prefix sum of the bit array
- Use the values as indexes of where to store the corresponding item.
- Only use the index at transitions (to avoid the need to use CRCW).

Array Compression Exposed

\[\text{Prefix sum: } 111122223333345 \]
\[\text{Indices: } 1 1 1 1 2 2 2 3 3 3 3 4 4 \]
\[\text{Parallel stores: } \]
\[\text{a e i o} \]

Exercise

- How would you do array expansion (the “inverse” of compression): distribute array elements according to a bit vector?

PRAM Computations

- So far have seen:
 - Binary-tree expressions (max, etc.)
 - Prefix sum
 - Vector compression and expansion (uses prefix sum)
 - Max-finding in \(O(1) \) (using CRCW-arb)
PRAM Computations

- Next:
 - Parallel merging
 - Pointer techniques
 - Tree-traversal
 - Quicksort (1-version)

Parallel Merging

- How can we **merge** two ordered arrays in parallel on a PRAM?
 - One means is to compute the **indices** of where the elements of one array are inserted into the other array.
 - We can then use something similar to array compression to do the actual insertion.

Computing indices for Parallel Merging

- A single index can be computed with **binary search**: Find the position in the other array at which the element would be inserted.
- Add the element’s current index to it to get the net final position.
- Do all binary searches in parallel.
- Each array computes the final indexes of its elements in the merged array.
- Each processor stores its elements simultaneously.

Parallel Merging

- Cost: \(n \) binary searches in parallel
- \(O(\log n) \) time (on CREW PRAM)

Exercise

- What is an upper bound for sorting using parallel merging?

Using Pointers in a PRAM

- “Pointer Jumping” technique
- As with prefix sum, this has many uses.
- Basic idea: in a chain of pointers stored in the common memory, the extremities of a chain can be determined in a way that **doubles** the length of the chain at each step:
 - If a location points “\(N \) hops away” now, it can point “\(2N \) hops away” on the next step.
 - This is because concatenating two \(N \)-hop chains gives a \(2N \)-hop chain.
List-Ranking Problem

- A pointer-jumping application
- Given a chain of pointers, determine the rank of each element in the chain

List-Ranking Step-by-Step

Step 0

Set your value to 1 if you point to something, 0 otherwise.

Step 1

Add your value to the value of your target (if any).
Then point to where your target points.

Step 2

Repeat previous.

Step 3

Repeat previous.
Summary

- A list can be ranked in $O(\log n)$ time on an EREW PRAM.

Exercises

- Show that a list can be prefixed-summed in $O(\log n)$.

Pre-Ordering a Tree

- Recall: Pre-Order:
 - Visit the root
 - Recursively pre-order the left sub-tree.
 - Recursively pre-order the right sub-tree.

Pre-Order Example

- How to Construct a Pre-Order on a PRAM in $O(\log n)$?
 - Create a list of nodes, two per arc of the original graph:
 - One node for the arc in the normal (downward) direction
 - A second for the arc in the other direction
 - Add a direction-indicator to each node.
 - Connect the nodes to represent the original arcs.
We now have an alternate representation from which we can recover the original tree.

Try it

How much time used so far?
What now?

List ranking variation
Count downward nodes only when adding values

Pre-order of original is reverse of this order
using first component of the root and the targets of the
↓ nodes only

Check with Original

Exercise

- We just showed that a pre-order traversal can be done in time $O(\log n)$. Do the same for an in-order traversal.

Application of In-Order Traversal

- A PRAM version of Quicksort
- Construct a tree indicating how the nodes partition (without actually moving any data)
- An in-order traversal of the tree gives the nodes in sorted order.
Exercise

- Assuming that the tree splits fairly evenly across each level, what is the time taken to do this version of Quicksort (assuming the asserted bound for in-order traversal).
Misc. Notes on PRAM

- Cole's sorting method based on merging:

- Parallel recognition of a context-free language: $P(\log^2 n)$ time using n^6 processors.

- Other problems/algorithms are known.

Using PRAM results in real life

- What are some problems of simulating PRAM's on real multiprocessors, say a on a Distributed-Memory Machine (DMM)?

PRAM -> DMM

- Memory conflict resolution at word-level
- Memory conflict resolution at memory-module level
- Communication delays

Possible resolutions

- Memory conflict resolution at word-level: Use only EREW model
- Memory conflict resolution at memory-module level:
 Split memory into multiple modules;
 Use multiple copies of contended data (must provide for reconciling)
- Communication delays
 Use 2-phase, random routing

Efficient Simulation of PRAM

- Karp, et al. STOC 1991
- An $n \log \log(n) \log^*(n)$ processor CRCW-arb PRAM is simulated on an n-processor DMM (Distributed memory machine).
- Average slowdown $O(\log\log(n) \log^*(n))$.