1. Using the directed graph representation used in class, provide examples of relations on a set of four objects that are:

(a) transitive, not reflexive, not symmetric
(b) transitive, symmetric, not reflexive
(c) symmetric, reflexive, not transitive
(d) anti-transitive, anti-symmetric, anti-reflexive

2. Some proofs concerning least elements:

(a) If a subset X of a poset (A, \leq) has a least element, is that element necessarily a greatest lower bound of X? If yes, prove it. If no, provide a counter example.
(b) Prove that a totally ordered set with no least element is infinite in size.

3. Define a non-trivial chain in a binary relation R as a sequence (a_1, \ldots, a_n) for some $n \geq 2$ such that the a_i are distinct, and $(a_i, a_{i+1}) \in R$ for $i \in [n-1]$. A chain is a non-trivial cycle if (a_n, a_1) is also an element of R.

Prove that a relation is a partial order iff it is reflexive and transitive and has no non-trivial cycles.

4. Given a poset (A, \leq), define the lexicographic ordering, \ll, on $A \times A$, induced by \leq, as follows:

For all $x, y, x', y' \in A$, $(x, y) \ll (x', y')$ iff either:
- $x < x'$, or
- $x = x'$ and $y < y'$, or
- $x = x'$ and $y = y'$

One example of a lexicographic ordering is the ordering used in a telephone directory. In that case, A is a set of strings, and \leq is ordinary alphabetic ordering on strings. Then the x values correspond to last names and the y values correspond to first names.

Prove that if the poset (A, \leq) is well-founded, then $(A \times A, \ll)$ is also well-founded. (You may assume [though you might want to confirm for yourself] that if \leq is a partial order, then \ll is indeed a partial order).

(Continued on Back)
5. Ackerman’s function on $\mathcal{N} \times \mathcal{N}$ is defined recursively in ML as:

```ml
fun A(x,y) = if x = 0
    then y+1
    else if y = 0
        then A(x-1,1)
        else A(x-1, A(x,y-1));
```

Assuming that such a recursive definition actually defines a partial function (this is non-trivial but is established in recursive function theory), prove by induction over the lexicographic ordering of $\mathcal{N} \times \mathcal{N}$ that Ackerman’s function is in fact a total function on pairs of natural numbers. That is, that for any pair of inputs there is a defined output.

6. Certify under the honor code that you have completed at least the first SML practice problem set. (You do not have to submit the actual solutions.)