1 One-step β-Reduction (80%)

Because (as you saw in class) there may be many ways to β-reduce a single term, people have come up with various “strategies” which, given any term, specify what the next reduction step should be. Here are four (the names are historical).

- **Normal-Order Reduction**: reduce the application (of a function to an argument) whose λ appears leftmost in (i.e., closest to the beginning of) the term.

 $$\left(\lambda x. (\lambda z. ((\lambda w. w)(\lambda v. v)))\right) (\lambda u. u)(\lambda y. y) \rightarrow_\beta \lambda z. ((\lambda w. w)(\lambda v. v)) \rightarrow_\beta \lambda z. (\lambda v. v)$$

 Normal-order reduction is interesting because it has the following guarantee: if there is any possible sequence of reductions to a term which has no occurrences of a function applied to an argument, then normal-order reduction will eventually produce this term.

- **Applicative-Order Reduction**: reduce the application whose λ occurs leftmost if the argument of this application cannot be further reduced; otherwise, first reduce the argument by one step (using applicative-order reduction).

 $$\left(\lambda x. (\lambda z. ((\lambda w. w)(\lambda v. v)))\right) (\lambda u. u)(\lambda y. y) \rightarrow_\beta \left(\lambda x. (\lambda z. ((\lambda w. w)(\lambda v. v)))\right) (\lambda y. y) \rightarrow_\beta \lambda z. ((\lambda w. w)(\lambda v. v)) \rightarrow_\beta \lambda z. (\lambda v. v)$$

 Applicative reduction is does not have the same termination guarantee as normal-order reduction, but in many cases it is more efficient.

- **Call-by-Name Evaluation**: The same as normal-order reduction, except we never reduce applications inside the body of a function. (This strategy may stop before all reductions are gone.)

 $$\left(\lambda x. (\lambda z. ((\lambda w. w)(\lambda v. v)))\right) (\lambda u. u)(\lambda y. y) \rightarrow_\beta \lambda z. ((\lambda w. w)(\lambda v. v))$$
This is a less aggressive version of normal-order reduction. If the result is a function that is not being applied to anything, why bother working on the function?

- **Call-by-Value Evaluation**: The same as applicative-order reduction, except that we never reduce applications inside the body of a function. (This strategy may stop before all reductions are gone.)

\[
\left(\lambda x. (\lambda z. ((\lambda w. w)(\lambda v. v))) \right) \left(\lambda u. (\lambda y. y) \right) \\
\rightarrow \beta \left(\lambda z. ((\lambda w. w)(\lambda v. v)) \right) \left(\lambda y. y \right) \\
\rightarrow \beta \lambda z. ((\lambda w. w)(\lambda v. v))
\]

This is the corresponding less-aggressive version of applicative reduction.

Write four functions corresponding to the above four strategies:

- \text{normal} : \text{lam} \rightarrow \text{lam option}
- \text{applicative} : \text{lam} \rightarrow \text{lam option}
- \text{cbn} : \text{lam} \rightarrow \text{lam option}
- \text{cbv} : \text{lam} \rightarrow \text{lam option}

These functions should return \text{NONE} if the argument cannot be reduced according to the given strategy, and \text{SOME} \ e' if the argument can be reduced one step to get the new term \ e'.

You may find the following pattern to be useful for many cases within your functions:

\[
\begin{align*}
\text{(case } \ldots \text{ recursive call } \ldots \text{ of} \\\n\text{NONE }&\Rightarrow \ldots \text{ do something} \ldots \\
\text{ | SOME } e' &\Rightarrow \ldots \text{ do something else} \ldots \\
\text{)}
\end{align*}
\]

It is always wise to put parentheses around \text{case} statements.

2 Multistep β-Reduction (20%)

Write a function

\[
\text{reduce} : (\text{lam} \rightarrow \text{lam option}) \rightarrow \text{lam} \rightarrow \text{lam}
\]

which takes a reduction strategy (i.e., one of the four functions above) and a lambda expression as sequential arguments. The \text{reduce} function should then repeatedly do one-step reduction using the given strategy until no further reductions are possible; if this occurs, return the final \lambda-expression. Note that there are inputs such as

\[
(\lambda x. (x x))(\lambda y. (y y))
\]

for which \text{reduce} will not terminate for any reduction strategy, and there are other inputs such as

\[
(\lambda z. w)((\lambda x. (x x))(\lambda y. (y y)))
\]

or

\[
\lambda z. ((\lambda x. (x x))(\lambda y. (y y)))
\]

which terminate under some strategies but not others.