1 Predecessor (30%)

For more practice working with \(\lambda\)-calculus, in this problem you will prove that the definition of predecessor that you saw in class is correct.

1. Prove that \(\Gamma M_1 M_2 \iff M_1 \langle \Gamma M_1 M_2 \rangle\) and that \(\Gamma n+1 M_1 M_2 \iff \Gamma M_1 n M_2\).

2. In class the predecessor function was defined as

\[
\text{pred}' = \lambda m. m \langle \Gamma 0, \Gamma 0 \rangle (\lambda p. (\text{snd } p, \text{succ}(\text{snd } p)))
\]
\[
\text{pred} = \lambda n. \text{fst} (\text{pred}' n)
\]

Prove that \(\forall m \geq 0. \text{pred}' \Gamma M + \Gamma M' \iff M'\).

3. Prove that \(\forall m \geq 0. \text{pred} \Gamma M + \Gamma M' \iff M'\).

2 Lambda Calculus Encodings (50%)

For this problem you will devise an encoding for lists within the untyped \(\lambda\)-calculus. Recall that a list is either empty or it has a head (first element) and a tail (a list containing the rest of the elements, possibly empty).

1. Find a lambda term \(\text{nil}\) to represent the empty list and a lambda term \(\text{cons}\) such that \(\text{cons } M N\) represents the non-empty list with head \(M\) and with tail \(N\). Then a finite list \([M_1, \ldots, M_n]\) would be represented as \(\text{cons } M_1 (\text{cons } M_2 (\cdots (\text{cons } M_n \text{nil}) \cdots))\).

Explain how to define the following functions for your encoding:

- The function \(\text{isnil}\) that returns \(tt\) if given \(\text{nil}\) and returns \(ff\) if given a non-empty list.
- The function \(\text{hd}\) that returns the head of a non-empty list.
- The function \(\text{tl}\) that returns the tail of a non-empty list.
Verify that

\[
\begin{align*}
\text{isnil } \text{nil} & \xrightarrow{\beta} \text{tt} \\
\text{isnil } (\text{cons } M_1 M_2) & \xrightarrow{\beta} \text{ff} \\
\text{hd } (\text{cons } M_1 M_2) & \xrightarrow{\beta} M_1 \\
\text{tl } (\text{cons } M_1 M_2) & \xrightarrow{\beta} M_2
\end{align*}
\]

2. Find a lambda term \textbf{length} such that \textbf{length} \(M \xrightarrow{\beta} n \) when \(M \) represents a finite list with \(n \) elements.

3. Find a lambda term \textbf{zeros} that represents an infinite list whose elements are all \(0 \).
 Prove that it satisfies \(\text{hd}(\text{tl}^n \text{zeros}) \xrightarrow{\beta} 0 \) for every \(n \geq 0 \).

3 Fixed Points (20%)

In class you saw the \(Y \) combinator for finding fixed points, which satisfies \(Y M \xrightarrow{\beta} M(Y M) \) for any term \(M \). There are actually many terms other than \(Y \) which compute fixed points.

1. The Turing fixed-point combinator \(\Theta \) is defined to be

\[
(\lambda x. \lambda y. y(xxy))(\lambda x. \lambda y. y(xxy))
\]

Prove that for any term \(M \) we have not just \(\Theta M \xrightarrow{\beta} M(\Theta M) \), but \(\Theta M \xrightarrow{\beta} M(\Theta M) \).

2. For curried functions with many arguments, it is common to write terms leaving out all but the first lambda, for example abbreviating \(\lambda x. \lambda y. \lambda z. \lambda w. M \) as \(\lambda xyzw. M \). Define

\[
\begin{align*}
T & := \lambda abcd efghi jklmnopqrstuvwxyz.r(thisisafixedpointcombinator) \\
U & := TT