Type Inference

April 22, 2002
CS 131: Programming Languages

The Type Checking Problem
• Given a program where the type of every variable is specified, determine whether the program is well-typed.

```
fun f(x: bool): real =
  if x then
    3.0
  else
    2.0 * f(not x)
```
• Straightforward if we have unique (or at least principal) types.

The Type Inference Problem
• Given a program with some or all type annotations missing, can types be inserted to make the program typecheck?

```
fun f(x) =
  if x then
    3.0
  else
    2.0 * f(not x)
```
• Sometimes called type reconstruction.

Metavariables
• Type inference requires figuring out the unknown types.
• We will do this by using metavariables, which range over type annotations.
A Procedure for Type Inference

1. Allocate a metavariable for each missing type annotation and every subexpression

 \(((\text{fn } f \Rightarrow f) \ (\text{fn } x \Rightarrow x)) (3)\)

"Algorithm" continued

2. For each subexpression, figure out all the constraints that a type checker would be checking

"Algorithm" continued

3. Find values of the metavariables such that all these equational constraints are satisfied.

Solving Constraints

- What is a solution to a set of constraints?
 - A type for each metavariable, such that, when these are plugged in all the equations become true.

- Does this idea sound familiar?
 - Say, from Prolog in CS 60?
 - Or (more recently) from Resolution Theorem Proving in CS 80?
Unification

- General problem:
 - Given two "phrases" containing constants and variables, find values for the variables that makes the two phrases equal.

Unification Specification

- If asked to unify int with int, we don't have to do anything.
 - Same for any other base types.
- If asked to unify $t_1\rightarrow t_2$ with $u_1\rightarrow u_2$ it is necessary and sufficient to find values for metavariables making $t_1=u_1$ and $t_2=u_2$ both true.
 - Similar for t_1*t_2 and u_1*u_2.
- If asked to unify a metavariable with itself, we don't have to do anything.
- If asked to unify a metavariable M with any other type t,
 - If M already has a definition, then we just need to check that this definition unifies with t.
 - Otherwise we can define the value of M to be t, so long as M doesn't already have a definition and as long as the type t does not involve M.
 - Latter condition is called the "occurs check", and prevents circular definitions.
 - By the way, Prolog skips this check for speed purposes.

Another Example

$$(\text{fn } x \Rightarrow (x \ x))\ (\text{fn } x \Rightarrow (x \ x))$$

One Last Example

```plaintext
let val id = (fn x => x)
in
  (id 3, id true)
end
```
Let-Polymorphism

- Observation: type inference would have worked if we hadn't used a definition

 \((\text{fn x => x})\ 3,\ (\text{fn x => x})\ \text{true}\)

- Suggests the following idea: whenever you see

 \(\text{let val x = e_1 in e_2}\)

 (where \(e_1\) is a value) typecheck it as

 \(e_2[x \leftarrow e_1]\)

More Efficient Implementation

- We can apply type inference to definitions and cache the results.
- For example, every time we do type inference on

 \(\text{fn x => x}\)

 we get the answer \(M \rightarrow M\) where \(M\) is a fresh, unconstrained metavariable.

 - That is, the code can be given type \(\text{int} \rightarrow \text{int},\ \text{bool} \rightarrow \text{bool},\ \text{(int*string)} \rightarrow \text{(int*string)},\) etc.
- Rather than substituting in the code, we can just remember this fact, which can be summarized with a "type scheme"

 \(\forall \alpha.\ \alpha \rightarrow \alpha\)
Modifications to Type Inference

• When typechecking a variable definition, need to figure out "how polymorphic" the definition is before we can typecheck uses of that definition.
 - We need to completely finish type inference on the definition before going on.

• Requires interleaving constraint generation and solving
 - More efficient anyway.
 - Implementations usually don't actually "construct" constraints to be solved later, but just invoke `unify` as they go along.

Examples

```ml
let val diag = fn x => (x, x)
in
  (diag "A", diag 65)
end
```

```ml
let val K = fn x => fn y => x
in
  ((K 1) 2, (K "foo") "bar")
end
```

Let-polymorphism

• This approach to polymorphism, where only definitions can be polymorphic, is variously referred to as
 - Let-Polymorphism
 - ML Polymorphism
 - Hindley-Milner Polymorphism

• More general polymorphism is possible, but much harder to do type inference!

```ml
fn id => (id 3, id true)
```

Pitfall 1

• If we find that the type of a defined variable involves a metavariable without a definition, does it follow that this variable is polymorphic?

```ml
fun foo x =
  let val y = x
  in
    y+y
  end
```
Constrained Metavariables

- An unset metavariable with still constrained if it also occurs in the type of some variable already in scope.
 - And said to be unconstrained otherwise.

- Only safe to make definitions polymorphic in unconstrained, unset metavariables.

Pitfall 2

- Should this code typecheck?

```sml
let
  val succ = (fn n => n+1)
  val r = ref (fn x=>x)
in
  r := succ;
  (!r)(true)
end
```

- SML ’97 uses the value restriction: only definitions which are clearly values may be polymorphic.

Complexity Results

- Given a monomorphic expression of length \(n \),
 - Determining whether the expression has a type (and if so what type) can be done in time \(O(n) \).
 - However, the type may have length \(O(2^n) \)

- Given a polymorphic expression of length \(n \),
 - Determining whether the expression has a type (and if so what type) can be done in time \(O(2^n) \).
 - However, the type may have length \(O(2^{2^n}) \)

- In practice, algorithm is much faster.