Curves

How should we represent a curve?
- Efficiency
- Usability

Complicated Curves

Simple curves connected end-to-end

Simple Curves

How should we represent a simple curve?
- Efficiency
- Usability
- Boundary constraints

Outline

- Representation
- Some Examples: Hermitian, Bezier
- Computation: Recursive subdivision

Curve Representation

- Explicit
- Implicit
- Parametric
Explicit

Curve is the trace of a function

Example: $y = x^2/4$

Explicit: problem

Many useful curves cannot be represented by explicit functions

Implicit

Curve is the zero Loci of a function

Example: $f(x,y) = 4y - x^2$

Implicit: more flexibility

$$F(x,y) = x^2 + y^2 - r^2$$

Implicit: problems

- How can we find the zero loci of a function $f(x,y)$?
- How can we express a half-circle?
- How can we specify boundary conditions for joins?
Parametric
Curve is the range of a function
Example: $x = 2t, y = t^2$

Parametric cubic polynomials
- Polynomials are expressive and can be efficiently computed
- Lower degree polynomials can't express non-planar curves
- Higher degree polynomials
 - Wiggle
 - Computationally more expensive

Parametric: tradeoffs
- Plus:
 - Computationally easy to find points on curve
 - Easy to specify portions of curves
 - Easy to specify boundary conditions
- Minus:
 - Without modeling tool the specification is not intuitive

Interpolating polynomials
- There is a unique polynomial curve of degree 2 through these points.
- \[y = y_0(x-x_1)(x-x_2)/(x_0-x_1)(x_0-x_2) + y_1(x-x_2)(x-x_3)/(x_1-x_2)(x_1-x_3) + y_2(x-x_0)(x-x_1)/(x_2-x_0)(x_2-x_1) \]
What about boundary conditions?

- Give me a polynomial curve through these points:

 ![Diagram showing three points connected by a curve]

Parametric Continuity

- C^0: adjacent curves connect at endpoints
- C^1: the 1st derivative of adjacent curves agree at endpoints

Geometric Continuity

- G^0: adjacent curves connect at endpoints
- G^1: the 1st derivative of adjacent curves agree at endpoints

Hermitian

- Specify endpoint position
- Specify endpoint tangent
Hermitian

\[\begin{align*}
X(t) &= at^3 + bt^2 + ct + d \\
X(0) &= 3, \quad X(1) = 2 \\
X'(0) &= 1, \quad X'(1) = 0
\end{align*} \]

Write 4 equations that determine the coefficients \(a, b, c, \) and \(d\).

Hermitian: Constraints

\begin{align*}
X(0): & \quad d = 3 \\
X(1): & \quad a + b + c + d = 2 \\
X'(0): & \quad c = 1 \\
X'(1): & \quad 3a + 2b + c = 0
\end{align*}

Hermitian Matrix Form

\[
\begin{bmatrix}
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 \\
3 & 2 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
a \\
b \\
c \\
d
\end{bmatrix}
=
\begin{bmatrix}
3 \\
2 \\
1 \\
0
\end{bmatrix}
\]

Find \(X(t)\)
Solve for a, b, c, d: Hint

\[
\begin{bmatrix}
0 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 \\
3 & 2 & 1 & 0
\end{bmatrix}^{-1} =
\begin{bmatrix}
2 & -2 & 1 & 1 \\
-3 & 3 & -2 & 1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{bmatrix}
\]

Hermitian Matrix: X

\[
\begin{bmatrix}
\begin{array}{cccc}
\text{a} & \text{b} & \text{c} & \text{d}
\end{array}
\end{bmatrix}
= \begin{bmatrix}
\begin{array}{cccc}
2 & -2 & 1 & 1 \\
-3 & 3 & -2 & 1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}
\end{bmatrix}
\begin{bmatrix}
\begin{array}{c}
3 \\
2 \\
2 \\
3
\end{array}
\end{bmatrix}
= \begin{bmatrix}
\begin{array}{c}
3 \\
-5 \\
1 \\
3
\end{array}
\end{bmatrix}
\]

Parametric equation: X

\[X(t) = 3t^3 - 5t^2 + t + 3\]

General Matrix: X

\[
\begin{bmatrix}
\begin{array}{cccc}
\text{a} & \text{b} & \text{c} & \text{d}
\end{array}
\end{bmatrix}
= \begin{bmatrix}
\begin{array}{cccc}
2 & -2 & 1 & 1 \\
-3 & 3 & -2 & 1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}
\end{bmatrix}
\begin{bmatrix}
\begin{array}{c}
X(0) \\
X(1) \\
X'(0) \\
X'(1)
\end{array}
\end{bmatrix}
\]

Hermitian Matrix: Y

\[
\begin{bmatrix}
\begin{array}{cccc}
\text{a} & \text{b} & \text{c} & \text{d}
\end{array}
\end{bmatrix}
= \begin{bmatrix}
\begin{array}{cccc}
2 & -2 & 1 & 1 \\
-3 & 3 & -2 & 1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}
\end{bmatrix}
\begin{bmatrix}
\begin{array}{c}
Y(0) \\
Y(1) \\
Y'(0) \\
Y'(1)
\end{array}
\end{bmatrix}
\]

Hermitian Basis Matrix

\[
\begin{bmatrix}
\begin{array}{cccc}
\text{a} & \text{b} & \text{c} & \text{d}
\end{array}
\end{bmatrix}
= \begin{bmatrix}
\begin{array}{cccc}
2 & -2 & 1 & 1 \\
-3 & 3 & -2 & 1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}
\end{bmatrix}
\begin{bmatrix}
\begin{array}{c}
X(0) \\
X(1) \\
X'(0) \\
X'(1)
\end{array}
\end{bmatrix}
\]

1/30/02 CS181a Lec 02 31

1/30/02 CS181a Lec 02 32

1/30/02 CS181a Lec 02 33

1/30/02 CS181a Lec 02 34

1/30/02 CS181a Lec 02 35

1/30/02 CS181a Lec 02 36
Example
- \(X(0) = 3, \ X(1) = 2, \ X'(0) = 1, \ X'(1) = 0\)
- \(Y(0) = 2, \ Y(1) = 2, \ X'(0) = 0, \ X'(1) = 1\)

• Write the equations
• Plot the curve for \(t\) in \([0,1]\)

Equations
- \(X(0) = 3, \ X(1) = 2, \ X'(0) = 1, \ X'(1) = 0\)
- \(Y(0) = 2, \ Y(1) = 2, \ X'(0) = 0, \ X'(1) = 1\)

• Equations:
 - \(X(t) = 3t^3 - 5t^2 + t + 3\)
 - \(Y(t) = t^3 - t^2 + 2\)

Plot
- \(X(0) = 3, \ X(1) = 2, \ X'(0) = 1, \ X'(1) = 0\)
- \(Y(0) = 2, \ Y(1) = 2, \ X'(0) = 0, \ X'(1) = 1\)

Hermitian Description
- Endpoint constraints
- Basis Matrix
- Basis (blending) Functions

Hermitian: \(X(t)\)
\[
X(t) = t^3 + t^2 + t + 1
\]

General Matrix: \(X\)
\[
X(t) = \begin{pmatrix}
2 & -2 & 1 & 1 \\
-3 & 3 & -2 & 1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{pmatrix}
\]
Blending Functions: X

\[
X(t) = P_0(t) P_1(t) P_2(t) P_3(t)
\]

Plot the Hermitian Blending Functions

Hermitian Blending Functions

\[
\begin{pmatrix}
2 & -2 & 1 & 1 \\
-3 & 3 & -2 & 1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
\end{pmatrix}
\]

\[
\begin{align*}
t^3 & + t^2 + 1 \\
2t^3 - 3t^2 + 1, & \quad -2t^3 + 3t^2, & \quad t^3 - 2t^2 + 1, & \quad t^3 - t^2
\end{align*}
\]

Hermitian: problem

1. Specifying derivatives is not intuitive for users.
2. Not invariant under affine transformations

Properties of Cubic Bezier Curves

- Control points \(p_0, p_1, p_2, p_3 \)
- Curve starts at \(p_0 \) and ends at \(p_3 \)
- Line segments \(p_0 - p_1 \) and \(p_2 - p_3 \) are tangent to the curve at, respectively, \(p_0 \) and \(p_3 \).
- The curve lies within the convex hull of the control points.
- Curve is invariant under affine transformations.

Lab

- Download bezier.cpp from /cs/cs155/labs
- Compile and Play
 - Right click to move red point
 - Left click to select new red point
 - Type "a" to then right click (3 times) to add new control points
 - Type "d" to delete last point
Cubic Bezier Matrix:

\[
X(t) = \begin{bmatrix}
-1 & -3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & -3 & 0 & 0 \\
1 & 0 & 0 & 0
\end{bmatrix}
\]

\(x_i\) is the x-coordinate of the i-th control point

Cubic Bezier Blending Functions (Bernstein polynomials):

\[x(t) = x_0 b_0(t) + x_1 b_1(t) + x_2 b_2(t) + x_3 b_3(t)\]

- \(x_i\) is x-coordinate of the i-th control point
- \(b_0(t) = (1-t)^3\)
- \(b_1(t) = 3t(1-t)^2\)
- \(b_2(t) = 3t^2(1-t)\)
- \(b_3(t) = t^3\)

Computation of points on curve:

- Direct computation
 - inefficient
- Forward differencing
 - error-prone
- Recursive, adaptive subdivision: deCasteljau algorithm

Quadratic Bezier Blending Functions (Bernstein polynomials):

\[x(t) = x_0 b_{2,0}(t) + x_1 b_{2,1}(t) + x_2 b_{2,2}(t)\]

- \(x_i\) is x-coordinate of the i-th control point
- \(b_{2,0}(t) = (1-t)^2\)
- \(b_{2,1}(t) = 2t(1-t)\)
- \(b_{2,2}(t) = t^2\)
Compute Quadratic Bezier:
IV

Why does this work?

• To be continued...

• Subdivision Curves and Surfaces