To solve problems using functions, we typically:

- Express the problem informally as a function, with input and output.
- Break down the function as a composition of simpler functions.
- Repeat this process, until we are using only functions that are built-in.
Function Decomposition Example (which might use anonymous functions)

- Construct a function that will tell whether a directed graph, represented as a list of arcs, is acyclic.
“Pruning” Method

- Rosalind B. Marimont
 A new method of checking the consistency of precedence matrices
 Journal of the ACM 6, 164-171, 1959

- Pruning away any arcs that point to leaves does not change the cyclic/acyclic nature of the graph.

- Pruning such arcs may produce additional leaves.

- Prune until no further pruning is possible:
 - If the result is empty, the original graph was acyclic.
 - If not, it was cyclic.
Examples of Pruning
(Leaves shown in green)

element 1:

\[
\begin{align*}
&\text{a} \\
&\text{b} \\
&\text{c} \\
&\text{d} \\
&\text{e}
\end{align*}
\]

\[
\begin{align*}
&\text{a} \\
&\text{b} \\
&\text{c} \\
&\text{e}
\end{align*}
\]

\[
\begin{align*}
&\text{a} \\
&\text{c} \\
&\text{e}
\end{align*}
\]

no leaves

example 2:

\[
\begin{align*}
&\text{a} \\
&\text{b} \\
&\text{c} \\
&\text{d} \\
&\text{e}
\end{align*}
\]

\[
\begin{align*}
&\text{b} \\
&\text{c}
\end{align*}
\]

empty
(no arcs)
Pruning with Graphs as Lists

- Example 1:
 - [[a, b], [a, c], [b, d], [c, d], [c, e], [e, a]] ➔
 - [[a, b], [a, c], [c, e], [e, a]] ➔
 - [[a, c], [c, e], [e, a]] (no leaves)

- Example 2:
 - [[a, b], [a, c], [b, d], [c, d], [c, e]] ➔
 - [[a, b], [a, c]] ➔
 - []
Note

- We are assuming that every node in the graph is on one or the other end of an arc, i.e. there are no isolated nodes, as in the graph below.
- Otherwise, we’d have to represent the graph with two lists: one of nodes and one of arcs.

![Graph diagram]

- a
- b
- c
- d
- e

isolated node
Functional Code

- **Basic idea:**
 - As long as there is a leaf:
 - Remove leaves and their attached arcs

- **Translation:**
 - $\text{isAcyclic(Graph)} = \text{null}(\text{iterate(\text{removeLeaves, hasLeaf, Graph})))$;

```plaintext
null(iterate(removeLeaves, hasLeaf, Graph));
```

hasLeaf

- A Graph has a leaf iff isLeaf is true for one of its nodes.
- \text{hasLeaf(Graph) =}
 \text{some((Node)\Rightarrow\text{isLeaf(Node, Graph)}, \text{nodes(Graph)})};

\begin{itemize}
 \item \text{test whether first arg. is true for some element of second arg.}
 \item true when Node is a leaf of this Graph
 \item list of nodes of Graph
\end{itemize}
isLeaf

- A node is a leaf if it is not the first of any arc in the graph.
- isLeaf(Node, Graph) = !member(Node, map(first, Graph));

- 'not' operator
- all nodes of Graph that begin some arc
nodes(Graph)

- nodes(Graph) =
 remove_duplicates(append(map(first, Graph),
 map(second, Graph)));

- remembering our assumption: that every node in the graph is on one or the other end of an arc, i.e. there are no isolated nodes, as in the graph below.
remove_leaves

- To remove the leaves:
 remove any arc that points to a leaf

- removeLeaves(Graph) =
 drop((Arc)\rightarrow isLeaf(second(Arc), Graph), Graph);

 the node to which Arc points

 the list of arcs in the graph
iterate

iterate(action, continue, State) =
continue(State) ?
iterate(action, continue, action(State))
: State;

conditional expression (as in C++, Java)
P ? A : B
means if P is true then the value of the expression is A; otherwise it is B.
Improving Efficiency

Recall the \textit{isAcyclic} example.

There there might be occasion to compute the same thing multiple times, for example
\begin{verbatim}
isLeaf(Node, Graph) may be called \textbf{multiple times} for a given Graph:
\end{verbatim}
\begin{verbatim}
hasLeaf(Graph) =
 some((Node)=>isLeaf(Node, Graph), nodes(Graph));
\end{verbatim}
\begin{verbatim}
Each time isLeaf is called, map(first, Graph) is recomputed
\end{verbatim}
\begin{verbatim}
isLeaf(Node, Graph) = !member(Node, map(first, Graph));
\end{verbatim}
\begin{verbatim}
It may be better to compute map(first, Graph) “up front” and pass it to isLeaf.
\end{verbatim}
Improving Efficiency

- Computing up front means an extra argument to isLeaf, which will may clutter the meaning of a given function:
- Below we “promote” map(first, Graph) out of isLeaf
 - hasLeaf(Graph) =
 some((Node)=>isLeaf(Node, map(first, Graph)), nodes(Graph));
 - isLeaf(Node, Firsts) = !member(Node, Firsts);
- However, it is still may be called once for each node.
- In order to avoid recomputation, we need to promote it out of the call to some.
- This can be done with a local equation, or “equational guard”:
 - hasLeaf(Graph) =
 Firsts =map(first, Graph),
 some((Node)=>isLeaf(Node, Firsts), nodes(Graph));
Improving Efficiency

- If we prefer not to use an equational guard, we can pass `Firsts` as an argument to `hasLeaf`:

- Below we “promote” `map(first, Graph)` out of `isLeaf`:
 - `hasLeaf2(Graph, Firsts) = some((Node)=>isLeaf(Node, Firsts), nodes(Graph));`

- This will necessitate introduction of a new definition for the original 1-argument `hasLeaf`:
 - `hasLeaf(Graph) = hasLeaf2(Graph, map(first, Graph));`
Improving Efficiency

- Alas, we overlooked at least one little detail:
- isLeaf is used in removeLeaves as well as in hasLeaf, so we'll similarly have to adjust its use there.

```
removeLeaves(Graph) =
    removeLeaves2(Graph, map(first, Graph));

removeLeaves2(Graph, Firsts) =
    drop(((Arc)=>isLeaf(second(Arc), Firsts)), Graph);
```
Improving Efficiency

- There is still one obvious inefficiency:
 - `map(first, Graph)` is computed in both `hasLeaf` and `removeLeaves`; We’d prefer to compute it only once.
 - The low-level definition (using recursion instead of `iterate`) then might be:
 - `isAcyclic(Graph) =
 Firsts = map(first, Graph),
 hasLeaf2(Graph, Firsts) ?
 isAcyclic(removeLeaves2(Graph, Firsts))
 : null(Graph);`

- Alternatively, we could construct a different version of `iterate`, but it would seem to be rather special purpose.
In previous slides, we used the property of referential transparency of functional languages (that expressions can be substituted for equivalent expressions) to improve efficiency.

It would not generally be possible to do such substitutions in an imperative language; procedures that have side-effects cannot be substituted so freely.

Transforming a program in the manner shown may impair its clarity and readability; so it is better to maintain a perhaps less-efficient reference version apart from the “production” version.