Low-Level Functional Programming

What’s “Low-Level” About?
- “low-level” refers to the construction of functions by explicitly composing and decomposing lists.
- Previously we used higher-order functions to do most of the non-trivial work in a functional decomposition.
- Now we are going to use pattern matching rules, recursion, etc.

Fundamental List Dichotomy
- A list is either:
 - empty, [] or
 - non-empty, in which case it has both a
 - first
 - rest
- Most list definitions deal with these cases separately.
- Definitions are typically a form of inductive definition, in which [] is the basis.

List Decomposition Notation
- When a list is non-empty, it has a first element and the rest of the elements form a list.
- The general form of a non-empty list will be represented:
 \[[F \mid R] \]
 Here F is a variable represents the first element, and R is a variable representing the rest of the elements
 (Note: R has a list as its value, even though brackets aren’t shown around R).

List Decomposition Example
- Consider a defining equation:
 \[[F \mid R] = [1, 2, 3, 4] \]
 F is a variable represents the first element, so:
 \[F = 1 \]
 R is a variable representing the rest of the elements, so:
 \[R = [2, 3, 4] \]

List Decomposition Clarified
- A defining equation:
 \[[F \mid R] = \text{some list} \]
 can only be valid when the RHS list is non-empty.
 Thus
 \[[F \mid R] = [\] \]
 can never be a valid equation.
Defining Functions by Rules

Suppose we want to define a function taking an arbitrary list as an argument.

It is sufficient to:
- define the function on the empty list, and
- define the function on a general non-empty list.

This is called the "basis" or "induction step" or "recursion".

Example

Define the function halve_all, which divides every element in a list by 2.
- halve_all([]) => []
- halve_all([F | R]) => [F/2 | halve_all(R)]

This can be read:
- "halving all of the empty list is the empty list."
- "halving all of a non-empty list is half of the first element followed by halving all of the rest."

This is our first example of a recursive definition.

Computation by "Rewriting"

halve_all([2, 4, 6]) ➨
- [1 | halve_all([4, 6])]
- [1 | [2 | halve_all([6])]]
- [1 | [2 | [3 | halve_all([])]]]

This is called the "induction step" or "recursion".

Extended Notation for Greater Readability

The first so-many, rather than just the first, element, can be shown separated by commas:
- [a, b, c, d | R] means a list with at least 4 elements, a, b, c, d, followed by the elements in list R (which could be empty).

In the extended notation:
- halve_all([2, 4, 6]) ➨
- [1 | halve_all([4, 6])]
- [1, 2 | halve_all([6])]
- [1, 2, 3 | halve_all([3])]
- [1, 2, 3]

A Way of Remembering

The combination
- [...] inside a list "melts away" into

 unless ... is empty, then it just melts away

Examples:
- [1 | [2, 3, 4]] => [1, 2, 3, 4]
- [1, 2 | [3, 4]] => [1, 2, 3, 4]
- [1, 2, 3 | [4]] => [1, 2, 3, 4]
- [1, 2, 3, 4 | []] => [1, 2, 3, 4]

Alternate

Of course, we could have just used map in this particular case:
- halve(A) = A/2;
- halve_all(X) = map(halve, X);

Use higher-order functions such as map when possible; resort to lower-order ones when you think you need to.

Higher-order functions can often tell the story more succinctly.
Example

- Define the function `member` which tests whether the first argument is an element of the list in the second argument.

```prolog
member(X, []) => 0;
member(X, [F | R]) =>
  (X == F) ? 1 : member(X, R);
```

Conditional expression (as in C++, Java)

Alternate

- Instead of using a conditional expression, use a third rule with pattern matching:

```prolog
member(X, []) => 0;
member(X, [X | R]) => 1;
member(X, [F | R]) => member(X, R);
```

Note: X's must match

The rule used is always the first (from top to bottom) applicable one.

Rule Matching

- Consider evaluating

<table>
<thead>
<tr>
<th>Function Call</th>
<th>Rule</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>member(3, [1, 2, 3, 4])</code></td>
<td><code>rule 3</code> is the first to apply</td>
</tr>
<tr>
<td><code>member(3, [2, 3, 4])</code></td>
<td><code>rule 3</code> is the first to apply</td>
</tr>
<tr>
<td><code>member(3, [3, 4])</code></td>
<td><code>rule 2</code> is the first to apply</td>
</tr>
<tr>
<td><code>1</code></td>
<td><code>1</code></td>
</tr>
</tbody>
</table>

- `member(X, [])` => 0; // rule 1
- `member(X, [X | R])` => 1; // rule 2
- `member(X, [F | R])` => member(X, R); // rule 3

Second Alternate

(less desirable)

- Use a conditional guard:

```prolog
member(X, []) => 0;
member(X, [F | R]) => (X == F) ? 1 : member(X, R);
```

The condition is tested after any other matching is applied.
If the condition fails, then subsequent rules are tried.

Rule Matching

- Consider evaluating

<table>
<thead>
<tr>
<th>Function Call</th>
<th>Rule</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>member(5, [1, 2, 3])</code></td>
<td><code>rule 3</code> is the first to apply</td>
</tr>
<tr>
<td><code>member(5, [2, 3])</code></td>
<td><code>rule 3</code> is the first to apply</td>
</tr>
<tr>
<td><code>member(5, [3])</code></td>
<td><code>rule 3</code> is the first to apply</td>
</tr>
<tr>
<td><code>member(5, [])</code></td>
<td><code>rule 1</code> is the first to apply</td>
</tr>
<tr>
<td><code>0</code></td>
<td><code>0</code></td>
</tr>
</tbody>
</table>

Matching with Two or More List Arguments

- Some functions have more than one list argument.

- Induction might, or might not, use rules that dichotomize both lists.
Example: List Equality

First Rule

- Two lists are equal if they both are empty:
 \[\text{equals}(\text{[]}, \text{[]}) \Rightarrow 1; \]

Second Rule

- Two lists are equal if they are both non-empty and
 - the first elements of each are the same, and
 - the lists of the rest of the elements of each are equal.
 \[\text{equals}(\text{[A | L]}, \text{[A | M]}) \Rightarrow \text{equals}(L, M); \]

Third Rule

- Otherwise, the two lists are not equal:
 \[\text{equals}(X, Y) \Rightarrow 0; \]

Summary of Equality Rules

1. \[\text{equals}(\text{[]}, \text{[]}) \Rightarrow 1; \]
2. \[\text{equals}(\text{[A | L]}, \text{[A | M]}) \Rightarrow \text{equals}(L, M); \]
3. \[\text{equals}(X, Y) \Rightarrow 0; \]

Example of List Equality

- Revisit our earlier example:
 - Are these lists equal:
 \[[1, 2, 3] \text{ vs. } [1, 2] ? \]
- Try the rules:
 - \[\text{equals}(\text{[1, 2, 3]}, \text{[1, 2]}) \Rightarrow \text{false} \] (rule 2)
 - \[\text{equals}(\text{[2, 3]}, \text{[2]}) \Rightarrow \text{false} \] (rule 2)
 - \[\text{equals}(\text{[3]}, \text{[]}) \Rightarrow \text{false} \] (rule 3)
 - 0
 - i.e. the lists are not equal.

Mixed Functional Programming Examples

- Use low-level or high-level, whatever fits best
 - Maybe start with low-level, and the use high-level retrospectively
- Radix conversion
- Tail recursion
- Tree searching
Convert Number to Binary

- Example:
 - toBinary(37) :: [1, 0, 0, 1, 0, 1]
 \[32 + 0*16 + 0*8 + 4 + 0*2 + 1\]
- First try:
 - divide by 2, record remainder, continue with quotient
 - until 0

Rules:
- toBinary1(0) => []
- toBinary1(N) => [N%2 | toBinary1(N/2)]

Problems with this definition?

Another try:
- toBinary(N) = toBinary2(N, [])
- toBinary2(0, Acc) => Acc
- toBinary2(N, Acc) =>
 toBinary2(N/2, [N%2 | Acc])

Why is this definition better?

Accumulators and Tail Recursion

- From previous slide:
 - toBinary2(0, Acc) => Acc;
 - toBinary2(N, Acc) =>
 toBinary2(N/2, [N%2 | Acc]):
 - Acc is called an "accumulator" argument:
- It "accumulates" the result until the basis case is reached, the "unloads" it.
- This type of recursion is called "tail recursion":
 - There is no "cleanup" to be done after the recursive call to
 - toBinary2, and therefore no need to "stack" calls.
 - We can effectively "turn over control" to the subordinate call:
 giving a form of iteration.

Accumulators and Tail Recursion

Notes:

- Can similarly convert to any given base.
- Can pass the base as an argument.
- Can convert back (from numeral list to number).
Exercise

- Construct fromBinary, e.g.
 - fromBinary([1, 0, 0, 1, 0, 1]) \rightarrow 37

- Considerations:
 - Do we need an accumulator?
 - Can it be done with tail-recursion?
 - Try it and see.

An Approach

- Write iterative pseudo-code, then construct recursive equivalent.

  ```
  L = ... list to be converted ...;
  Result = 0;
  while(L != [])
  { 
    Result = 2*Result + first(L);
    L = rest(L);
  }
  ...
  answer is in Result ...
  ```

- Defining fromBinary3(L, Result):
 - fromBinary3([], Result) \rightarrow Result;
 - fromBinary3([F | R], Result) \rightarrow fromBinary3(R, 2*Result+F);
 - fromBinary3(L) = fromBinary3(L, 0);

  ```
  fromBinary3([1, 0, 0, 1, 0, 1], 0) ➨ 
  fromBinary3([0, 0, 1, 0, 1], 1) ➨ 
  fromBinary3([0, 1, 0, 1, 2]) ➨ 
  fromBinary3([1, 1, 9]) ➨ 
  fromBinary3([1, 17]) ➨ 
  37
  ```

Exercise

- What if the list were least-significant bit first?
 - Can you do construct the function?
 - Can you construct a tail-recursive implementation?

Exercises

- Compare "obvious" and tail-recursive forms of:
 - factorial function (fac(n) = 1*2*3*...*n)
 - length function
 - sum of a list
 - reduce
 - reverse

Essential Non-Tail Recursions

- Some functions don't admit a tail-recursive version (unless reverse is used before or after):
 - Examples:
 - map, keep, drop
 - append

appendectomy

- When maximum efficiency is desired, uses of append should be avoided.
- It is often possible to get rid of append by defining versions of functions with an extra accumulator argument.
- Example:
  ```
  nodes(Graph) =
  remove_duplicates(append(map(first, Graph),
    map(second, Graph)));
  ```
- Show how to avoid append by generalizing map to take an accumulator.