Motivation: Parsing

- Parsing is the act of turning text into meaningful information.
- Example:
 - Programming language: Parsing makes the language into an executable machine language program.
 - Calculator: Parsing interprets the symbols to carry out the calculation being represented.
 345 + 62.7*84.9 doesn't have a "magical" meaning; we have to give it one.

Grammars, and Induction

- Grammars provide a plan for parsing; they define the syntax of a language.
- Grammars are an instance of a more general concept: Inductive Definitions.
- rex rules are often inductive definitions; but grammars may be non-deterministic for a reason.

Inductive Definitions

- Elements of an inductive definition of a set S:
 - Basis
 - Induction rule(s)
 - Extremal clause

- Inductive definitions are the main "constructive" way to define infinite sets.
- We will need infinite sets in much of what follows.
Example of ID: Binary Trees

- is a binary tree.
- If T₁ and T₂ are binary trees, then so is:

```
   T₁   T₂
```
- Extremal clause: The only binary trees are those constructible by a finite number of applications of the above rules.

Examples of Binary Trees

Note: T₁ and T₂ are binary trees.

Example of ID: Natural Numbers \(\omega \)

- Basis: 0 is in \(\omega \).
- Induction: If \(n \) is in \(\omega \), so is the successor of \(n \) (variously denoted \(n' \), \(S(n) \), or \(n+1 \)).
- Extremal: The only elements in \(\omega \) are those derivable by applications of the above rules.
- Examples: 0, 0', 0'', 0''', 0'''', … are all elements of \(\omega \).

Interpretations of Successor (')

- What are 0', 0'', 0''', … really?
 - Strings of symbols, or
 - Things that can be constructed from sets, a more primitive concept.
 - Two variations:
 - 0 is {}, the empty set; X' is the set {{}, {X}}.
 - 0 is {}, the empty set; X' is the set X \cup \{X\}.
 - In the second example: 0 is {}, 0' is {{}}, 0'' is {{}, {{}}}, 0''' is {{}, {{}}, {{}, {{}}}}...
 - Advantage: \(0^n \) is a set with \(n \) distinct members.

Decimal Numerals

- We can agree by convention that
 - 1 stands for 0',
 - 2 stands for 0'',
 - ...
 - 9 stands for 0''''''''.
- Beyond that, give an algorithm for generating additional numerals:
 10, 11, 12, 13, …
Decimal Numbering Rule
- The successor of x_0 (concatenation) is x_1, the successor of x_1 is x_2, ..., and the successor of x_8 is x_9.
- The successor of x_9 is y_0 where y is the successor of x.
- Example: $0, 1, ..., 9, 10, 11, ..., 19, 20, 21, ..., 99, 100, ...$

1-adic Numerals
- The only digit is 1.
- The empty string (denoted λ so it is readable) stands for 0.
- $1X$ (1 followed by X) stands for X'.
- The numerals are: $\lambda, 1, 11, 111, 1111, ...$
- Could also use lists: $[\], [1], [1, 1], [1, 1, 1], ...$

2-adic Numerals
- The digits are 1 and 2.
- The empty string (denoted λ so it is visible) stands for 0.
- The numerals are: $\lambda, 1, 2, 11, 12, 21, 22, 111, 112, ...$
- Unlike binary numerals, there is no redundancy ($1, 01, 001, 0001, ...$ all mean the same thing in binary).

Roman Numerals
- The digits are I, V, X, L, C, D, M.
- There is no string for 0.
- The successor of I is $s(I) = II$, $s(II) = III$, $s(III) = IV$, etc.

Numerals vs. Numbers
- **Numbers** are abstract.
- **Numerals** are a concrete representation of numbers.

Strings over an alphabet Σ
- The set of all finite strings over an alphabet Σ is denoted Σ^*.
- Example:
 - $(a, b)^* = \{\lambda, a, b, aa, ab, ba, bb, aaa, aab, aba, ...\}$
Strings over an alphabet Σ

- **Basis:** λ is in Σ^*.

- **Inductive rule:** If $x \in \Sigma^*$ and $\sigma \in \Sigma$, then σx (σ followed by x) is in Σ^*.

- **Extremal clause.**

Languages

- A language over Σ is any subset of Σ^*.

- **Examples, where $\Sigma = \{a, b\}$**
 - $(a, b)^*$ itself
 - $\{\lambda\}$ the empty language
 - $(ba, baba)$ maybe your first language
 - $(\lambda, aa, aaaa, aaaaaa, \ldots)$ the language of an even number of a's.

More Languages

- **Examples, where $\Sigma = \{a, b\}$**
 - $(\lambda, ab, ba, aabb, abab, baab, bbaa, aababb, \ldots)$ the language in which the number of a's equals the number of b's.
 - $(a, b, aa, bb, aab, aba, baa, abb, bba, \ldots)$ the language in which the number of a's is not equal to the number of b's.
 - $(ab, abab, aabb, aababb, \ldots)$ a language you might recognize.

Languages

- There are lots of languages, some very weird.

- To be of computational interest, a language needs to be defined **inductively**.

- We need a way of telling whether a given string is in the language or not (called **parsing** the string).

Non-Trivial Language Defined Inductively

- $L = \{ab, abab, aabb, aababb, \ldots\}$
- **Basis:** ab is in L.

- **Inductive rules:**
 - If x is in L, so is axb.
 - If x_1 and x_2 are in L, so is x_1x_2.

Grammars: A Shorthand

- Spelling everything out with these inductive definitions is laborious.

- We need a shorthand, especially for more complex languages.

- The idea comes from linguistics and early work on computer languages.
Grammatical Definition

- There is a "start symbol", or "root", say S, not in the alphabet of the language itself.
- \(\rightarrow \) is a symbol meaning "can be rewritten as".
- Grammar rules:
 - \(S \rightarrow ab \)
 - \(S \rightarrow aSb \)
 - \(S \rightarrow SS \)
- Application of rules is by "free choice".
- A sequence of applications is called a derivation.
- The strings in the language are those that don't include S.

Using the Grammar Rules

- Grammar rules:
 - \(S \rightarrow ab \)
 - \(S \rightarrow aSb \)
 - \(S \rightarrow SS \)
- Example derivations of strings in the language:
 - \(S \Rightarrow ab \)
 - \(S \Rightarrow aSb \Rightarrow aabb \)
 - \(S \Rightarrow SS \Rightarrow SS \Rightarrow abab \Rightarrow aabb \)
 - \(S \Rightarrow SS \Rightarrow aSbS \Rightarrow aabb \)
 - \(S \Rightarrow SS \Rightarrow SS \Rightarrow SS \Rightarrow abab \Rightarrow aabb \Rightarrow aabb \)

Generalizing Grammar Rules

- Instead of just S, allow multiple symbols, called auxiliaries, none of which are in the alphabet of the language.
- A distinguished auxiliary is called the root or "start symbol".
- The symbols in the alphabet of the language are called terminals.
- The rules are known as productions.

Example: Grammar for Additive Arithmetic Expressions

- The root is A.
- The terminals are \(\{a, b, c, +\} \).
- The productions are:
 - \(A \rightarrow V \)
 - \(A \rightarrow V + A \)
 - \(V \rightarrow a \)
 - \(V \rightarrow b \)
 - \(V \rightarrow c \)

Example Derivations

- The productions are:
 - \(A \rightarrow V \)
 - \(A \rightarrow V + A \)
- Sample derivations:
 - \(A \Rightarrow V \Rightarrow a \)
 - \(A \Rightarrow V \Rightarrow c \)
 - \(A \Rightarrow V + A \Rightarrow c + A \Rightarrow c + V \Rightarrow c + a \)
 - \(A \Rightarrow V \Rightarrow A \Rightarrow c + A \Rightarrow c + V + A \Rightarrow c + b + A \Rightarrow c + b + V \Rightarrow c + b + a \)

Shorthands on top of Shorthands

- The productions are:
 - \(A \rightarrow V \)
 - \(A \rightarrow V + A \)
 - \(V \rightarrow a \)
 - \(V \rightarrow b \)
 - \(V \rightarrow c \)
- Group by common left-hand sides
- Use \(| \) (read "or") to represent alternatives:
 - \(A \rightarrow V | V + A \)
 - \(V \rightarrow a | b | c \)
- Note: \(| \) "binds more loosely" than other symbols.
- Same grammar, just a briefer notation.
Derivation Tree Visualization

\[
\begin{align*}
A & \rightarrow V | V + A \\
V & \rightarrow a | b | c
\end{align*}
\]

Terminal string = red "fringe" of tree = "c + a + b"

Syntax Tree (≠ Derivation Tree)

Shows Implied "Interpretation" of String

Right Grouping (used so far) vs. Left Grouping Productions

Does Grouping Matter?

- Mathematically, + is an associative operator:
 \[(a + b) + c = a + (b + c)\]
- However:
 - There are non-associative operators, such as -, where it does matter.
 \[a - (b - c) \neq (a - b) - c\]
- On computers, for floating point addition, associativity does not always hold.

Floating Point is Not Associative

- Try this:
 - \[\text{sumup}(n, m) = m > n ? 0 : 1./m + \text{sumup}(m+1, n);\]
 - \[\text{sumdown}(n, m) = m > n ? 0 : 1./n + \text{sumdown}(m-1, n);\]
 - \[\text{test}(n) = \text{sumup}(1, n) = \text{sumdown}(1, n);\]
 - \[\text{map}(\text{test}, \text{range}(1, 100));\]

- Grouping sensitivity is due to round-off error.

Precedence Issue

(multiple operator symbols)

- How do we ensure that the syntax tree of
 \[a + b \times c\]
 looks like this: and not this:
Multiple Auxiliaries

- We want * to "bind more tightly" than +.
- Use a different auxiliary symbol for each level of precedence.
- Arrange it so that expansions from the tighter binding auxiliary symbol can only be done after those of the looser binding auxiliary.

Precedence Issue

- We must ensure that the derivation tree for a+b*c looks like this: and not this:

```
  A
 /\  /
M  + M
 /\  /
V  a V
 /\  /
V  b V
 /\  /
V  c V
```

Syntactic Categories

- The various auxiliary symbols typically represent syntactic categories: sets of sub-expressions having a certain type of meaning.
- Categories:
 - $A \rightarrow M + A \mid M$ S is a "sum"
 - $M \rightarrow V \cdot M \mid V$ P is a "product"
 - $V \rightarrow a \mid b \mid c$ V is a "variable"

Example: Grammar for Additive & Multiplicative Arithmetic Expressions

- The root is A.
- The terminals are $\{a, b, c, +, *\}$.
- The productions are:
 - $A \rightarrow M + A \mid M$
 - $M \rightarrow V \cdot M \mid V$
 - $V \rightarrow a \mid b \mid c$
- Intuitive rule: Operator "farther from the root" binds more tightly

Example Derivations

- The productions are:
 - $A \rightarrow M + A \mid M$
 - $M \rightarrow V \cdot M \mid V$
 - $V \rightarrow a \mid b \mid c$
- Sample derivations (A is the syntactic category):
 - $A \Rightarrow M \Rightarrow V \Rightarrow a$
 - $A \Rightarrow M + A \Rightarrow V + A \Rightarrow a + A \Rightarrow a + M \Rightarrow a + V \Rightarrow a + b$
 - $A \Rightarrow M + A \Rightarrow V + A \Rightarrow a + A \Rightarrow a + M \Rightarrow a + V * M$
 - $a + b * M \Rightarrow a + b * c$
- Observation: Derivations from M don't include any +’s.
Exercise: Include ^ (power)

- ^ binds the most tightly
- * is next
- + is the weakest

How to handle '(' ')'

- Parentheses means "handle inside as a single unit"
- Parallel level to a single variable
 - Sometimes called "primaries"

Two Main Language Problems

- Recognition problem: Is a given string in the language?
- Meaning problem: What is the meaning of a string if it is in the language?

Naive Solution to the Recognition Problem

- To determine whether string x is in the language generated by a grammar:
 - Start with the start symbol.
 - Generate strings successively by applying productions.
 - Eventually either:
 - The string x is generated, or
 - The new strings being generated all exceed x in length.
 - So we can tell whether or not x is ever generated.

Parsing

- Parsing seeks to solve both problems:
 - Recognition
 - Meaning
- In addition, it tries to do recognition much more efficiently than the naive solution.

Recursive Descent Parsing

- Simplest reasonably general form of parsing.
- Works for many, but not all grammars.
- Sometimes a grammar can be transformed to enable recursive descent.
- Recall that each auxiliary symbol in the grammar can be identified with a syntactic category, the set of strings that can be generated from that symbol (possibly with the help of other symbols). The meaning will derive from this idea.
Recursive Descent

- It’s called “recursive” because in general grammar productions can “call” themselves or each other.
- It’s called “descent” because parsing starts at the root of a “derivation tree” and proceeds toward the leaves.

Parse Methods

- For each auxiliary symbol in the grammar, construct a parse method.
- Each parse method’s responsibility is to recognize the longest string in the corresponding syntactic category in the remainder of the input, from the current point onward:

 a + b * c
 passed remaining

Example

- Consider the grammar with start symbol S:
 - S → V + S | V
 - V → a | b | c

 The parse begins by trying to identify the entire input string as being in syntactic category S.
 - Clearly it must find a V to start.
 - To find a V, it checks to see whether the next symbol is one of those listed.
 - Having found a V, it checks to see if the next symbol is +.
 - If so, it recursively trying to find another S.
 - If not it stops.

Example: Success

- Suppose the input string is “a + b + c”.
 - The parser calls S1("a + b + c").
 - S1 calls V1("a + b + c").
 - V1 identifies a, returns success and unparsed input "b + c".
 - S1 checks for + and finds it; therefore, S1 calls S2("b + c").
 - S2 calls V2("b + c").
 - V2 identifies b, returns success and unparsed input "c".
 - S2 checks for + and finds it; therefore, S2 calls S3("c").
 - S3 calls V3("c").
 - V3 identifies c, returns success and unparsed input "".
 - S3 checks for + and does not find it; therefore, S3 returns success with "".
 - S1 returns success with "".
 - The string is accepted.

Example: Failure

- Suppose the input string is "a b + c".
 - The parser calls S1("a b + c").
 - S1 calls V1("a b + c").
 - V1 identifies a, returns success and unparsed input "b + c".
 - S1 checks for + and does not find it; therefore, S1 returns success with "b + c".

 Since the top-level call to S1 has returned, but there is residual input, the string is not accepted.

A rex version of parsing

- Each syntactic category will be a rex function.
 - There is one argument:
 - the unparsed input, a list of characters.
 - There are two results:
 - success or failure indicator
 - for success: the Syntax Tree
 - for failure: FAILURE (some special value, not a syntax tree)
 - the unparsed input.
A rex version of parsing (1)

// parse function for auxiliary A, rules A -> V | V + A

A(input) =
Vresult = V(input), // try for V
[tree1, residue1] = Vresult,
residue1 == [] ? Vresult // use A -> V
: failed(tree1) ? Vresult // failure
: first(residue1) == '+' ?
 ([tree2, residue2] = A(rest(residue1)), // try A -> V + A
 failed(tree2) ?
 Vresult // use A -> V only
 : [mkTree('+', tree1, tree2), residue2] // use A -> V + A
)
: Vresult; // use A -> V

Test cases

test(A(explode("a")), ['a', []]);
test(A(explode("a+b")), [['+', 'a', 'b'], []]);
test(A(explode("a+b+c")), [['+', 'a', ['+', 'b', 'c']], []]);
test(A(explode("a+b+c+a")), [['+', 'a', ['+', 'b', ['+', 'c', 'a']]], []]);
test(A(explode("")), [FAILURE, []]);
test(A(explode("+")), [FAILURE, ['+']]);
test(A(explode("ab")), ['a', ['b']]);
test(A(explode("a+b+")), [['+', 'a', 'b'], ['+']]);
test(A(explode("a+b+c+")), [['+', 'a', ['+', 'b', 'c']], ['+']]);
test(A(explode("ab+c")), ['a', ['b', '+', 'c']]);
test(A(explode("a+b+")), [['+', 'a', 'b'], ['+']]);

A rex version of parsing (2)

// parse function for auxiliary V, rules V -> a | b | c

V([]) => [FAILURE, []]; // no input
V([c | chars]) => isVar(c) ? [mkTree(c), chars]; // variable
V([c | chars]) => [FAILURE, [c | chars]]; // not a variable

// auxiliary functions
FAILURE = "failure";
VARS = ['a', 'b', 'c'];
isVar(char) = member(char, VARS);
failed(result) = result == FAILURE;
mkTree(Var) = Var;
mkTree(Op, Tree1, Tree2) = [Op, Tree1, Tree2];
parse(string) = A(explode(string));

Operators + and * with * having higher precedence

Rules:

A -> M + A | M
M -> V * M | V
V -> a | b | c

Note that * is analogous to +.
A is to M and + as
M is to V and *
Therefore the same rule pattern applies to both.

rex parsing for +, * (A)

A(input) =
Mresult = M(input), // try for M
[tree1, residue1] = Mresult,
residue1 == [] ? Mresult // use A -> M
: failed(tree1) ? Mresult // failure
: first(residue1) == '+' ?
 ([tree2, residue2] = A(rest(residue1)), // try A -> M + A
 failed(tree2) ?
 Mresult // use A -> M only
 : [mkTree('+', tree1, tree2), residue2] // use A -> M + A
)
: Mresult; // use A -> M

rex parsing for +, * (M)

M(input) =
Vresult = V(input), // try for V
[tree1, residue1] = Vresult,
residue1 == [] ? Vresult // use M -> V
: failed(tree1) ? Vresult // failure
: first(residue1) == '+' ?
 ([tree2, residue2] = M(rest(residue1)), // try M -> V * M
 failed(tree2) ?
 Vresult // use M -> V only
 : [mkTree('+', tree1, tree2), residue2] // use M -> V + M
)
: Vresult; // use M -> V
Parsing Methods in Java

- In the Java version, we will "not need to" return the unparsed input as a value.
- We can side-effect the input stream to achieve a similar result, "using up" characters as we go.
- We can store the input stream in the parse object, rather than pass it as an argument.

Additive Grammar

\[
A \rightarrow V | V + A
\]
\[
V \rightarrow a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v | w | x | y | z
\]

Corresponding to the grammar above, there will be two parse methods:

- `A()`
- `V()`

Each parses from the current point in the input.

V() method

```java
/**
 * PARSE METHOD for V \rightarrow a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v | w | x | y | z
 */
Object V()
{
    skipWhitespace();
    if (isVar(peek()))
    {
        return makeString(nextChar());
    }
    return failure;
}
```

makeString(char c)

```java
/**
 * make a String from a char
 */
static String makeString(char c)
{
    return (new StringBuffer(1).append(c)).toString();
}
```
isVar()

/**
 * predicate defining whether its argument is a variable
 */
boolean isVar(char c)
{
 switch(c)
 {
 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': case 'g':
 case 'h': case 'i': case 'j': case 'k': case 'l': case 'm': case 'n':
 case 'o': case 'p': case 'q': case 'r': case 's': case 't': case 'u':
 case 'v': case 'w': case 'x': case 'y': case 'z':
 return true;
 default:
 return false;
 }
}

Do not use arithmetic on integer codes for this purpose.

Recursive A() method

/**
 * PARSE METHOD for A -> V | 'i' V
 */
Object A()
{
 Object result;
 Object V1 = V();
 if(isFailure(V1)) return failure;
 if(skipWhitespace() && nextCharIs('+'))
 {
 Object A2 = A();
 if(isFailure(A2)) return failure;
 return OpenList.list('+', V1, A2);
 }
 else
 {
 return V1;
 }
}

"Inverse McCarthy Transformation"
for Grammars with left-grouping

() is a meta-symbol meaning "0 or more of what's inside"

- Recursion → Iteration
- Works in some cases, not all
- Use for convenience and readability

Replacing some Recursion with Iteration

A() method, iterative version

/** PARSE METHOD for A -> V { '+' V } **/
Object A()
{
 Object result;
 Object V1 = V();
 if(isFailure(V1)) return failure;
 result = V1;
 while (skipWhitespace() && nextCharIs('+'))
 {
 Object V2 = V();
 if(isFailure(V2)) return failure;
 result = OpenList.list('+', result, V2);
 }
 return result;
}

The Additive/Multiplicative Grammar

Additive

A -> V { '*+' V }
V -> a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v | w | x | y | z

Additive and Multiplicative

A -> P { '*+' P }
P -> V { '**' V }
V -> a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v | w | x | y | z

Construct methods by analogy.
Remembering Precedence Rules

- Tighter-binding operators are further away from the root of the grammar:

 $A \rightarrow P \{ '+' P \}$

 $P \rightarrow V \{ '*' V \}$

 * binds more tightly than +

Syntax Tree Applet

Example: SimpleCalc

- Parses numeric expressions with $+$, $*$, and parentheses
- Computes the numeric answer
- Same grammar as SyntaxTree applet

```java
/**
 * SimpleCalc Parse method for $A \rightarrow P \{ '+' P \} \{ '*' P \}$
 */

Object A()
{
    Object result = P();                           // get first addend
    if( isFailure(result) ) return failure;
    while( skipWhitespace() && nextCharIs('+') )
    {
        Object P2 = P();                          // get next addend
        if( isFailure(P2) ) return failure;
        try
        {
            result = Arith.add( result, P2 );    // accumulate result
        }
        catch( IllegalArgumentException e )
        {
            System.err.println( "error: IllegalArgumentException caught" );
        }
    }
    return result;
}
```

Grammar for Unicalc

- Example
 - 3.5 meters2 / (watt hour)
- Operators
 - $+$
 - $*$
 - juxtaposition (implied multiplication)
- Units (meter, second, etc.)
- Numbers (floating point allowed: 1.23e-45)
- Parentheses

Result of Parsing Unicalc

- A Unicalc quantity: Object with 3 components:
 - numeric multiplier
 - numerator
 - denominator
- The parser may perform some "algebra":
 - * gets converted to multiplication
 - $/$ and juxtaposition use Unicalc divide and multiply