Inductive Definitions
Languages,
Grammars,
Parsing
Motivation: Parsing

- Parsing is the act of turning text into meaningful information.

- Example:
 - **Programming language**: Parsing makes the language into an executable machine language program.

 - **Calculator**: Parsing interprets the symbols to carry out the calculation being represented.

 $345 + 62.7 \times 84.9$

 doesn't have a "magical" meaning; we have to give it one.
Grammars, and Induction

- Grammars provide a **plan** for parsing; they define the **syntax** of a language.

- Grammars are an instance of a more general concept: **Inductive Definitions**.

- rex rules are often inductive definitions; but grammars may be **non-deterministic** for a reason.
Inductive Definitions

- Inductive definitions are the main "constructive" way to define infinite sets.

- We will need infinite sets in much of what follows.
Inductive Definitions

Elements of an inductive definition of a set S.

- Basis
- Induction rule(s)
- Extremal clause
Inductive Definitions

- Elements of an inductive definition of a set S:
 - **Basis**: Defines a few items to be in S.
 - **Induction rule(s)**: Introduce new items in S based on existence of other, usually simpler, items.
 - **Extremal clause**: Says that the only items in S are those derivable by the previous two elements, applied any finite number of times.
Example of ID: Binary Trees

- is a binary tree.

- If T_1 and T_2 are binary trees, then so is:

 ![Binary Tree Diagram]

- Extremal clause: The only binary trees are those constructible by a finite number of applications of the above rules.
Examples of Binary Trees
Example of ID: Natural Numbers ω

- **Basis**: 0 is in ω.
- **Induction**: If n is in ω, so is the successor of n (variously denoted n', $S(n)$, or $n+1$).
- **Extremal**: The only elements in ω are those derivable by applications of the above rules.
- **Examples**: 0, 0′, 0″, 0‴, 0⁴″, ... are all elements of ω.
Notes

- ω is an infinite set.
- ω’s members are all finite.
- ω does not contain infinity (∞) as an element.
Interpretations of Successor (')

- What are $0'$, $0''$, $0'''$, ... really?
 - Strings of symbols, or
 - Things that can be constructed from sets, a more primitive concept.

 Two variations:
 - 0 is $\{\}$, the empty set; X' is the set $\{X\}$, or
 - 0 is $\{\}$, the empty set; X' is the set $X \cup \{X\}$.

 In the second example: 0 is $\{\}$, $0'$ is $\{\} \cup \{\}$, $0''$ is $\{\}$, $\{\} \cup \{\}$, $\{\} \cup \{\} \cup \{\}$, ...

 Advantage: 0^n's is a set with n distinct members.
Decimal Numerals

- We can agree by convention that
 - 1 stands for 0′,
 - 2 stands for 0″,
 - ...
 - 9 stands for 0″″″″″″.
- Beyond that, give an algorithm for generating additional numerals: 10, 11, 12, 13, ...
Decimal Numbering Rule

- The successor of x_0 (concatenation) is x_1, the successor of x_1 is x_2, ..., and the successor of x_8 is x_9.
- The successor of x_9 is y_0 where y is the successor of x.
- Example: 0, 1, ..., 9, 10, 11, ..., 19, 20, 21, ..., 99, 100, ...
1-adic Numerals

- The only digit is 1.
- The empty string (denoted \(\lambda \) so it is readable) stands for 0.
- \(1X \) (1 followed by X) stands for \(X' \).
- The numerals are:
 \[\lambda, 1, 11, 111, 1111, 1111, \ldots \]

- Could also use lists: [] , [1] , [1, 1] , [1, 1, 1] , ...
2-adic Numerals

- The digits are 1 and 2.
- The empty string (denoted \(\lambda \) so it is visible) stands for 0.
- The numerals are:
 \[\lambda, 1, 2, 11, 12, 21, 22, 111, 112, \ldots \]
- Unlike binary numerals, there is no redundancy (1, 01, 001, 0001, ... all mean the same thing in binary).
Roman Numerals

- The digits are I, V, X, L, C, D, M.
- There is no string for 0.
- The successor of I is $s(I) = II$, $s(II) = III$, $s(III) = IV$, etc.
Numerals vs. Numbers

- **Numbers** are abstract.

- **Numerals** are a concrete representation of numbers.
Strings over an alphabet Σ

- The set of all finite strings over an alphabet Σ is denoted Σ^*.
- Example:
 - $\{a, b\}^* = \{\lambda, a, b, aa, ab, ba, bb, aaa, aab, aba, \ldots\}$
Strings over an alphabet \(\Sigma \)

- **Basis:** \(\lambda \) is in \(\Sigma^* \).

- **Inductive rule:** If \(x \in \Sigma^* \) and \(\sigma \in \Sigma \), then \(\sigma x \) (\(\sigma \) followed by \(x \)) is in \(\Sigma^* \).

- **Extremal clause.**
Languages

- A language over Σ is any subset of Σ^*.

- Examples, where $\Sigma = \{a, b\}$
 - $\{a, b\}^*$ itself
 - $\{\} \quad$ the empty language
 - $\{ba, baba\} \quad$ maybe your first language
 - $\{\lambda, aa, aaaa, aaaa, aaaaaa, \ldots\} \quad$ the language of an even number of a's.
More Languages

- **Examples, where** $\Sigma = \{a, b\}$
 - $\{\lambda, ab, ba, aabb, abab, baab, bbba, aaabbb, aababbb, \ldots\}$ the language in which the number of a's equals the number of b's.
 - $\{a, b, aa, bb, aab, aba, baa, abb, bab, bba, \ldots\}$ the language in which the number of a's is *not* equal to the number of b's.
 - $\{ab, abab, aabb, aababbb, \ldots\}$ a language you might recognize.
Languages

- There are lots of languages, some very weird.
- To be of computational interest, a language needs to be defined inductively.
- We need a way of telling whether a given string is in the language or not (called parsing the string).
Non-Trivial Language Defined Inductively

- $L = \{ab, abab, aabb, aababb, \ldots\}$
- **Basis:** ab is in L.
- **Inductive rules:**
 - If x is in L, so is axb.
 - If x_1 and x_2 are in L, so is x_1x_2.
Grammars: A Shorthand

- Spelling everything out with these inductive definitions is laborious.

- We need a shorthand, especially for more complex languages.

- The idea comes from linguistics and early work on computer languages.
Grammatical Definition

- There is a “start symbol”, or “root”, say S, not in the alphabet of the language itself.
- → is a symbol meaning “can be rewritten as”.
- Grammar rules:
 - $S \rightarrow ab$
 - $S \rightarrow aSb$
 - $S \rightarrow SS$
- Application of rules is by “free choice”.
- A sequence of applications is called a derivation.
- The strings in the language are those that don't include S.
Using the Grammar Rules

∗ Grammar rules:
 ∗ S → ab
 ∗ S → aSb
 ∗ S → SS

∗ Example derivations of strings in the language:
 ∗ S ⇒ ab
 ∗ S ⇒ aSb ⇒ aabb
 ∗ S ⇒ aSb ⇒ aaSbb ⇒ aaabbb
 ∗ S ⇒ SS ⇒ abS ⇒ abab
 ∗ S ⇒ SS ⇒ SSS ⇒ ababab
 ∗ S ⇒ SS ⇒ aSbS ⇒ aabSb ⇒ aabbaabbb
Generalizing Grammar Rules

- Instead of just S, allow multiple symbols, called **auxiliaries**, none of which are in the alphabet of the language.
- A distinguished auxiliary is called the **root** or “**start symbol**”.
- The symbols in the alphabet of the language are called **terminals**.
- The rules are known as **productions**.
Example:
Grammar for Additive Arithmetic Expressions

- The root is A.
- The terminals are \{a, b, c, +\}.
- The productions are:
 - $A \rightarrow V$
 - $A \rightarrow V + A$
 - $V \rightarrow a$
 - $V \rightarrow b$
 - $V \rightarrow c$
Example Derivations

- The productions are:
 - $A \rightarrow V$
 - $A \rightarrow V + A$
 - $V \rightarrow a$
 - $V \rightarrow b$
 - $V \rightarrow c$

- Sample derivations:
 - $A \Rightarrow V \Rightarrow a$
 - $A \Rightarrow V \Rightarrow c$
 - $A \Rightarrow V + A \Rightarrow c + A \Rightarrow c + V \Rightarrow c + a$
 - $A \Rightarrow V + A \Rightarrow c + A \Rightarrow c + V + A \Rightarrow c + b + A \Rightarrow c + b + V \Rightarrow c + b + a$
The productions are:

- $A \rightarrow V$
- $A \rightarrow V + A$
- $V \rightarrow a$
- $V \rightarrow b$
- $V \rightarrow c$

Group by common left-hand sides

Use $|$ (read “or”) to represent alternatives:

- $A \rightarrow V | V + A$
- $V \rightarrow a | b | c$

Note: $|$ “binds more loosely” than other symbols.

Same grammar, just a briefer notation.
Derivation Tree Visualization

\[A \rightarrow V \mid V + A \]
\[V \rightarrow a \mid b \mid c \]

Terminals in red
Auxiliaries in green

Arrows indicate that a production is being applied

Terminal string = red “fringe” of tree = “c + a + b”
Syntax Tree (≠ Derivation Tree)
Shows Implied "Interpretation" of String

Derivation Tree

Syntax Tree
Right Grouping (used so far) vs. Left Grouping Productions

A → A + V | V
V → a | b | c

Left-grouping production

A + V
A + V
V
V
a
b
c

Derivation Tree

Syntax Tree

Right-grouping production

A → V + A | V
V → a | b | c

A + V
V + A
V + A
V + A
b
V
c
Does Grouping Matter?

- Mathematically, + is an associative operator:
 \[(a + b) + c = a + (b + c) \]

- However:
 - There are non-associative operators, such as -, where it does matter.
 \[(a - b) - c \neq a - (b - c) \]
 - On computers, for floating point addition, associativity does not always hold.
Floating Point is Not Associative

Try this:

- \(\text{sumup}(m, n) = \begin{cases} 0 : & m > n \\ 1./m + \text{sumup}(m+1, n) : & \text{otherwise} \end{cases} \)
- \(\text{sumdown}(m, n) = \begin{cases} 0 : & m > n \\ 1./n + \text{sumdown}(m, n-1) : & \text{otherwise} \end{cases} \)
- \(\text{test}(n) = \text{sumup}(1, n) == \text{sumdown}(1, n) \)
- \(\text{map}(\text{test}, \text{range}(1, 100)) \)

- [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

- Grouping sensitivity is due to round-off error.
How do we ensure that the syntax tree of \(a + b \times c \) looks like this: and not this:
Multiple Auxiliaries

- We want * to “bind more tightly” than +.
- Use a different auxiliary symbol for each level of precedence.
- Arrange it so that expansions from the tighter binding auxiliary symbol can only be done after those of the looser binding auxiliary.
Precedence Issue

- We must ensure that the derivation tree for \(a+b*c\) looks like this: and not this:

\[
\begin{align*}
&\text{(loose)} \\
&\text{(tight)}
\end{align*}
\]
Example:
Grammar for Additive & Multiplicative
Arithmetic Expressions

- The root is \(A \).
- The terminals are \{a, b, c, +, *\}.
- The productions are:
 - \(A \rightarrow M + A \mid M \)
 - \(M \rightarrow V * M \mid V \)
 - \(V \rightarrow a \mid b \mid c \)
- Intuitive rule: Operator “farther from the root” binds more tightly
The various auxiliary symbols typically represent **syntactic categories**: sets of sub-expressions having a certain type of meaning.

Categories:
- \(A \rightarrow M + A \mid M \)
 \(S \) is a “sum”
- \(M \rightarrow V \ast M \mid V \)
 \(P \) is a “product”
- \(V \rightarrow a \mid b \mid c \)
 \(V \) is a “variable”
Example Derivations

- The productions are:
 - $A \rightarrow M + A \mid M$
 - $M \rightarrow V \cdot M \mid V$
 - $V \rightarrow a \mid b \mid c$

- Sample derivations (A is the syntactic category):
 - $A \Rightarrow M \Rightarrow V \Rightarrow a$
 - $A \Rightarrow M + A \Rightarrow V + A \Rightarrow a + A \Rightarrow a + M \Rightarrow a + V \Rightarrow a + b$
 - $A \Rightarrow M + A \Rightarrow V \cdot M + A \Rightarrow a \cdot M + A \Rightarrow a \cdot V \Rightarrow a \cdot b \cdot c$
 - $A \Rightarrow M + A \Rightarrow V \cdot M + A \Rightarrow a \cdot M + A \Rightarrow a \cdot V + A \Rightarrow a \cdot b + A \Rightarrow a \cdot b + M \Rightarrow a \cdot b + V \Rightarrow a \cdot b + c$
Example Syntactic Categories

- The productions are:
 - \(A \rightarrow M + A \mid M \)
 - \(M \rightarrow V \ast M \mid V \)
 - \(V \rightarrow a \mid b \mid c \)

- Sample sub-derivations:
 - **Derivations from \(M \):**
 - \(M \Rightarrow V \Rightarrow a \)
 - \(M \Rightarrow V \ast M \Rightarrow a \ast M \Rightarrow a \ast V \Rightarrow a \ast b \)
 - \(M \Rightarrow V \ast M \Rightarrow a \ast M \Rightarrow a \ast V \ast M \Rightarrow a \ast b \ast M \Rightarrow a \ast b \ast V \Rightarrow a \ast b \ast a \)
 - **Observation:** Derivations from \(M \) don’t include any ‘+’s.
Exercise: Include ^ (power)

- ^ binds the most tightly
- * is next
- + is the weakest
How to handle ‘(’ ‘)’

- Parentheses means “handle inside as a single unit”

- Parallel level to a single variable
 - Sometimes called “primaries”
Two Main Language Problems

- **Recognition problem:**
 Is a given string in the language?

- **Meaning problem:**
 What is the meaning of a string if it *is* in the language?
Naïve Solution to the Recognition Problem

To determine whether string x is in the language generated by a grammar:

- Start with the start symbol.
- Generate strings successively by applying productions.
- Eventually either:
 - The string x is generated, or
 - The new strings being generated all exceed x in length.
- So we can tell whether or not x is ever generated.
Parsing

- Parsing seeks to solve both problems:
 - Recognition
 - Meaning
- In addition, it tries to do recognition much more efficiently than the naïve solution.
Recursive Descent Parsing

- Simplest reasonably general form of parsing.
- Works for many, but not all grammars.
- Sometimes a grammar can be transformed to enable recursive descent.
- Recall that each auxiliary symbol in the grammar can be identified with a syntactic category, the set of strings that can be generated from that symbol (possibly with the help of other symbols). The meaning will derive from this idea.
Recursive Descent

- It’s called “recursive” because in general grammar productions can “call” themselves or each other.

- It’s called “descent” because parsing starts at the root of a “derivation tree” and proceeds toward the leaves.
Parse Methods

- For each auxiliary symbol in the grammar, construct a **parse method**
- Each parse method’s responsibility is to recognize the longest string in the corresponding *syntactic category* in the remainder of the input, from the current point onward:

\[
\underbrace{a + b \ast c}_{\text{passed}} \underbrace{\text{remaining}}_{\text{remaining}}
\]
Example

- Consider the grammar with start symbol S:
 - $S \rightarrow V + S \mid V$
 - $V \rightarrow a \mid b \mid c$
- The parse begins by trying to identify the entire input string as being in syntactic category S.
- Clearly it must find a V to start.
 - To find a V, it checks to see whether the next symbol is one of those listed.
- Having found a V, it checks to see if the next symbol is $+$.
 - If so, it recurses, trying to find another S.
 - If not it stops.
- After the top call to S returns, it checks to see whether there are any spurious remaining characters in the input.
 - If there are, the input is not accepted.
 - If not, the input is accepted.
Example: Success

\[S \rightarrow V + S | V \]
\[V \rightarrow a | b | c \]

- Suppose the input string is “a + b + c”.
- Subscripts will indicate the particular instance of the method and the “argument” will indicate the unparsed remainder of the input.
- The parser calls \(S_1("a + b + c") \).
- \(S_1 \) calls \(V_1("a + b + c") \).
- \(V_1 \) identifies \(a \), returns success and unparsed input “+ b + c”.
- \(S_1 \) checks for + and finds it; therefore \(S_1 \) calls \(S_2("b + c") \).
- \(S_2 \) calls \(V_2("b + c") \).
- \(V_2 \) identifies \(b \), returns success and unparsed input “+ c”.
- \(S_2 \) checks for + and finds it; therefore \(S_2 \) calls \(S_3("c") \).
- \(S_3 \) calls \(V_3("c") \).
- \(V_3 \) identifies \(c \), returns success and unparsed input “”.
- \(S_3 \) checks for + and does not find it; therefore \(S_3 \) returns success with “”.
- \(S_2 \) returns success with “”.
- \(S_1 \) returns success with “”.

The string is accepted.
Example: Failure

Suppose the input string is “a b + c”.
- The parser calls $S_1(“a b + c”)$.
- S_1 calls $V_1(“a b + c”)$.
- V_1 identifies a, returns success and unparsed input “b + c”.
- S_1 checks for $+$ and does not find it; therefore S_1 returns success, with “b + c”.
- Since the top-level call to S_1 has returned, but there is residual input, the string is not accepted.
A rex version of parsing

- Each syntactic category will be a rex function.
- There is one argument:
 - the unparsed input, a list of characters.
- There are two results:
 - success or failure indicator
 - for success: the Syntax Tree
 - for failure: FAILURE (some special value, not a syntax tree)
 - the unparsed input.
A rex version of parsing (1)

// parse function for auxiliary A, rules A -> V | V + A

A(input) =
 Vresult = V(input), // try for V
 [tree1, residue1] = Vresult, // use A -> V
 residue1 == [] ? Vresult // failure
 : failed(tree1) ? Vresult // failure
 : first(residue1) == '+' ?

 ([tree2, residue2] = A(rest(residue1)), // try A -> V + A
 failed(tree2) ?
 Vresult // use A -> V only
 : [mkTree('+', tree1, tree2), residue2] // use A -> V + A
)

 : Vresult; // use A -> V
```javascript
// Test cases

test(A(explode("a")), ['a', []]);
test(A(explode("a+b")), [['+', 'a', 'b'], []]);
test(A(explode("a+b+c")), [['+', 'a', ['+', 'b', 'c']], []]);
test(A(explode("a+b+c+a")), [['+', 'a', ['+', 'b', 'c']], ['+'], [ ]]);
test(A(explode("")), [FAILURE, []]);
test(A(explode("+")), [FAILURE, ['+'], [ ]]);
test(A(explode("ab")), ['a', ['b']]);
test(A(explode("a+b+")), [['+', 'a', 'b'], ['+'], [ ]]);
test(A(explode("a+b+c+")), [['+', 'a', ['+', 'b', 'c']], ['+'], [ ]]);
test(A(explode("ab+c")), ['a', ['b', '+', 'c']]);
test(A(explode("a+b+")), [['+', 'a', 'b'], ['+'], [ ]]);
```
A rex version of parsing (2)

// parse function for auxiliary V, rules V -> a | b | c

V([]) => [FAILURE, []]; // no input

V([c | chars]) => isVar(c) ? [mkTree(c), chars]; // variable

V([c | chars]) => [FAILURE, [c | chars]]; // not a variable

// auxiliary functions

FAILURE = "failure";
VARS = ['a', 'b', 'c'];

isVar(char) = member(char, VARS);

failed(result) = result == FAILURE;

mkTree(Var) = Var;
mkTree(Op, Tree1, Tree2) = [Op, Tree1, Tree2];

parse(string) = A(explode(string));
Operators + and *
with * having higher precedence

Rules:
- \(A \rightarrow M + A \mid M \)
- \(M \rightarrow V * M \mid V \)
- \(V \rightarrow a \mid b \mid c \)

Note that * is analogous to +.
- \(A \) is to \(M \) and + as
 - \(M \) is to \(V \) and *

Therefore the same rule pattern applies to both.
A(input) =
 Mresult = M(input), // try for M
 [tree1, residue1] = Mresult,
 residue1 == [] ? Mresult // use A -> M

 : failed(tree1) ? Mresult // failure

 : first(residue1) == '+' ?

 ([tree2, residue2] = A(rest(residue1)), // try A -> M + A
 failed(tree2) ?
 Mresult // use A -> M only
 : [mkTree('+', tree1, tree2), residue2] // use A -> M + A

)

 : Mresult; // use A -> M
rex parsing for +, * (M)

\[
M(\text{input}) = \\
\quad V\text{result} = V(\text{input}), \\
\quad [\text{tree1}, \text{residue1}] = V\text{result}, \\
\quad \text{residue1} == [] ? V\text{result} \\
\quad : \text{failed}(\text{tree1}) ? V\text{result} \\
\quad : \text{first}(\text{residue1}) == '*' ? \\
\quad \\
\quad \quad ([\text{tree2}, \text{residue2}] = M(\text{rest}(\text{residue1})), \\
\quad \quad \quad \text{failed}(\text{tree2}) ? \\
\quad \quad \quad \quad V\text{result} \\
\quad \quad \quad : [\text{mkTree}('\ast', \text{tree1}, \text{tree2}), \text{residue2}]) \\
\quad : V\text{result}; \\
\quad : V\text{result};
\]

// try for V
// use M -> V
// failure
// try M -> V * M
// use M -> V only
// use M -> V + M
// use M -> V
In the Java version, we will “not need to” return the unparsed input as a value.

We can side-effect the input stream to achieve a similar result, “using up” characters as we go.

We can store the input stream in the parse object, rather than pass it as an argument.
/**
* ParseFromString is the base class for parsing from a String,
* such as a single input line.
*/

class ParseFromString
{
 ParseFromString(String input) // constructor

 char nextChar()

 boolean nextCharIs(char c)

 char peek()

 boolean skipWhitespace()
}
Additive Grammar

\[A \rightarrow V \mid V + A \]

\[V \rightarrow a|b|c|d|e|f|g|h|i|j|k|l|m |n|o|p|q|r|s|t|u|v|w|x|y|z \]

Corresponding to the grammar above, there will be two parse methods:

\[A() \]
\[V() \]

Each parses from the current point in the input.
Runnable Examples

parse/addRecursive/Additive.java

parse/add/Additive.java

parse/addMult/AddMult.java

parse/simpleCalc/SimpleCalc.java
/**
 * PARSE METHOD for V → abcdeffghijklmnopqrstuvwxyz
 */

Object V()
{
 skipWhitespace();

 if(isVar(peek()))
 {
 return makeString(nextChar());
 }
 return failure;
}
/**
 * make a String from a char
 */

static String makeString(char c)
{
 return (new StringBuffer(1).append(c)).toString();
}
isVar()

/**
 * predicate defining whether its argument is a variable
 */

boolean isVar(char c)
{
 switch(c)
 {
 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': case 'g':
 case 'h': case 'i': case 'j': case 'k': case 'l': case 'm': case 'n':
 case 'o': case 'p': case 'q': case 'r': case 's': case 't': case 'u':
 case 'v': case 'w': case 'x': case 'y': case 'z':
 return true;

 default:
 return false;
 }
}

Do not use arithmetic on integer codes for this purpose.
Recursive A() method

/**
 * PARSE METHOD for A -> V { '+' V }
 */

Object A()
{
 Object result;
 Object V1 = V();
 if(isFailure(V1)) return failure;

 if(skipWhitespace() && nextCharIs('+'))
 {
 Object A2 = A();
 if(isFailure(A2)) return failure;
 return OpenList.list('+', V1, A2);
 }
 else
 {
 return V1;
 }
}

Replacing some Recursion with Iteration
“Inverse McCarthy Transformation”
for Grammars with \texttt{left}-grouping

\{ \} is a meta-symbol meaning “0 or more of what’s inside”

- **Recursion \rightarrow Iteration**
- **Works in some cases, not all**
- **Use for convenience and readability**

\begin{align*}
\text{Recursive Form} & \quad A \rightarrow V \mid A + V \\
\quad & \quad V \rightarrow a \mid b \mid c
\end{align*}

\begin{align*}
\text{Iterative Form} & \quad A \rightarrow V \{ + V \} \\
\quad & \quad V \rightarrow a \mid b \mid c
\end{align*}

both forms are “left grouping” in this example
A() method, iterative version

/** PARSE METHOD for A -> V { '+' V } **/

Object A()
{
 Object result;
 Object V1 = V();
 if(isFailure(V1)) return failure;

 result = V1;

 while(skipWhitespace() && nextCharIs('+'))
 {
 Object V2 = V();
 if(isFailure(V2)) return failure;
 result = OpenList.list("+", result, V2);
 }
 return result;
}
The Additive/Multiplicative Grammar

Additive

A → V { '+' V }

V → a | b | c | d | e | f | g | h | i | j | k | l | m
 | n | o | p | q | r | s | t | u | v | w | x | y | z

Additive and Multiplicative

A → P { '+' P }
P → V { '*' V }
V → a | b | c | d | e | f | g | h | i | j | k | l | m
 | n | o | p | q | r | s | t | u | v | w | x | y | z

Construct methods by analogy.
Tighter-binding operators are introduce further away from the root of the grammar:

\[A \rightarrow P \{ \text{`+` } P \} \]
\[P \rightarrow V \{ \text{`*` } V \} \]

* binds more tightly than +
Syntax Tree Applet

Input numeric expression for syntax analysis:

111 + 222 * 333

http://www.cs.hmc.edu/courses/current/examples/java/parse/syntaxTree/SyntaxTree.html
Example: SimpleCalc

- Parses numeric expressions with +, *, ()
- Computes the numeric answer
- Same grammar as SyntaxTree applet
Object A()
{
 Object result = P(); // get first addend
 if(isFailure (result)) return failure;

 while(skipWhitespace () && nextCharIs ('+'))
 {
 Object P2 = P(); // get next addend
 if(isFailure (P2)) return failure;
 try
 {
 result = Arith.add(result, P2); // accumulate result
 }
 catch(IllegalArgumentException e)
 {
 System.err.println("error: IllegalArgumentException caught");
 }
 }
 return result;
}
Grammar for Unicalc

- **Example**
 - 3.5 meters^2 / (watt hour)

- **Operators**
 - ^
 - /
 - juxtaposition (implied multiplication)

- **Units** (meter, second, etc.)

- **Numbers** (floating point allowed: 1.23e-45)

- **Parentheses**
Result of Parsing Unicalc

- A Unicalc quantity:
 Object with 3 components:
 - numeric multiplier
 - numerator
 - denominator

- The parser may perform some “algebra“:
 - ^ gets converted to multiplication
 - / and juxtaposition use Unicalc divide and multiply