1. Questions of Syntax:

(a) Give the set of free variables and and the set of bound variables of the formula:

$$\forall z(p(x) \land \forall x[\exists y\{q(y, f(z)) \Rightarrow r(g(g(w, x), f(y)))\}])$$

... Free Variables: \{x, w\}
Bound Variables: \{x, y, z\}

(b) Give the result of substituting \(f(y)\) for the variable \(x\) in that formula.

... \[\forall z(p(f(y)) \land \forall x[\exists y\{q(y, f(z)) \Rightarrow r(g(g(w, x), f(y)))\}])\]

The quantification over \(x\) in the right conjunct blocks substitution in that sub-formula.

(c) Give the result of substituting \(f(y)\) for the variable \(w\) in the original formula (not in the answer from the last substitution).

... \[\forall z(p(x) \land \forall x[\exists v\{q(v, f(z)) \Rightarrow r(g(g(f(y), x), f(v)))\}])\]

We must rename the bound uses of \(y\) so that we may substitute \(f(y)\) under the binder without risk of capturing the \(y\) in that term.
2. Questions of Semantics:

For each of the following formulas (or, sets of formulas) show that they are both satisfiable and falsifiable, by giving interpretations for each case. Make sure you provide an assignment for quantified variables as well, where that appears necessary. Explanatory prose may also be helpful. For example:

- \(\forall x(\exists y(l(y, x))) \)

 Satisfiable: Let the domain be the integers, and interpret \(l \) as the less than relation. Clearly for every integer there is an integer less than it.

 (Alternately, let the domain be any non-empty set, and interpret \(l \) as any equivalence relation on that set. Since an equivalence relation is reflexive, then each element is at least related to itself, if nothing else.)

 Falsifiable: Let the domain be the natural numbers and interpret \(l \) as the less than relation. Then if \(x \) is 0, there is no smaller natural number.

Note: I begin with some “normal” interpretations. Then, I start picking some pretty arbitrary ones, just to remind you that ALL the interpretations would need to work for the formulas to be valid.

(a) \(\exists x(\forall y(p(x, y))) \)

Satisfiable: Let the domain be the natural numbers, and interpret \(p \) as the greater-than-or-equal relation. Then the assignment assigning zero to \(x \) satisfies the formula.

Falsifiable: As above, but interpret \(p \) as the greater-than relation. There is no number such that every number (including itself) is greater than it.

(b) \(\forall x(p(x) \Rightarrow q(x)) \)

Satisfiable: Let the domain be 5 digit natural numbers. Interpret \(q \) such that it is true for numbers in the range 90000 to 99999 and false otherwise. Interpret \(p \) as true when the number is a valid zip code for a property in California and false otherwise. Then the formula is satisfied.

Falsifiable: Let the domain be the natural numbers, interpret \(p \) as true for odd numbers only, and \(q \) as true for prime numbers only. The formula is false, since 9 is odd but not prime.

(c) \((q(a) \land q(b) \land p(a)) \Rightarrow \forall x(p(x) \Rightarrow q(x)) \)

Satisfiable: Let the domain be the alphabetic characters. Interpret \(p \) as true only for the letters in the string “MICHAEL”, \(q \) as true if a letter is before the letter ‘P’ in the alphabet, \(a \) as the letter ‘H’ and \(b \) as the letter ‘G’. Then the formula is satisfied since all letters in that name are in the first half of the alphabet. (In fact, the interpretation of \(a \) and \(b \) are incosequential, since the universal is true regardless.)

Falsifiable: Let the domain be as above, and let \(p \) be true for letters in the string “MICHAEL ERLINGER”. Let \(q \) be true if a letter is after ‘P’ in the
alphabet, and let a be ‘R’ and b be ‘S’. Then the conjunction is satisfied,
but the universal is false, since ‘A’ is in the name, but is not after ‘P’ in the
alphabet.

(d) $(heated(j) \land bug(b) \land in(b,j)) \Rightarrow dead(b)$

Satisfiable: Let the domain be things in my kitchen. Interepret the predicates
as indicated by their names. Let j be the pot on the stove, and b the dead
fly floating in the soup. Then the formula is true.

Falsifiable: Let the domain be things in my kitchen. Interepret $heated$ as being
below 32$^\circ$F, bug as true for beef products, in as true iff the first thing is
heavier than the second thing, and $dead$ as true for things that I like to eat
with peanut butter. Let j be a pie crust in my freezer, and b be a Hebrew
National hot dog in the refrigerator. Then the formula is false since the pie
crust is frozen, the hot dog is beef and lighter than the pie crust, yet I don’t
care for hot dogs with peanut butter.

(e) $(\forall x (plus(x,0) \equiv x \land
\forall x (\forall y (plus(s(x),y) \equiv s(plus(x,y)))) \Rightarrow
plus(s(s(0)),s(s(0))) \equiv s(s(s(0))))$)

Satisfiable: Let the domain be the natural numbers. Interpret 0 as zero, s
as the successor function, and $plus$ as the addition function. (Note, the
interpretation of \equiv is always fixed to be equality on the underlying domain.)

Falsifiable: Let the domain be the natural numbers. Interpret 0 as zero, s as the
successor function, but let $plus$ be the subtraction function. Then, for every
x, $x - 0 = x$ is true, and for every x and y, $(x+1) - y = (x-y) + 1$. However,
the right hand side of the implication says that $0 = 4$, which is false.
Note that if we had written the second assumption as $\forall x (\forall y (plus(x,s(y)) \equiv
s(plus(x,y))))$ then this formula would not be falsifiable. Why?
3. Questions of Encoding I:

Given the predicates defined in class for the beer-drinkers database example, provide existential formulas equivalent to the following queries:

(a) What drinkers drink at least one beer served by the Hi-brow?

\[
\{\text{person}|(\exists \text{beer}(\exists \text{price}(\text{serves(hibrow, beer, price)}) \land \text{likes(person, beer))))\}
\]

(b) What drinkers drink all the beers served by the Hi-brow?

The core of the query is:

\[
\{\text{person}|(\forall \text{beer}(\exists \text{price}(\text{serves(hibrow, beer, price)}) \Rightarrow \text{likes(likes, beer)}))\}
\]

But if there are no beers served by the Hi-Brow, then the left of the implication is true for every value of the variable \text{beer}, making the implication true for every value, and the universal, then, true no matter what value we put in for \text{person}. So we need to either constrain the value of \text{person}, as in:

\[
\{\text{person}|((\exists \text{beer}(\text{likes(person, beer)})) \lor \exists \text{bar}(\text{frequents(person, bar)})) \land
\forall \text{beer}(\exists \text{price}(\text{serves(hibrow, beer, price)}) \Rightarrow \text{likes(likes, beer)}))\}
\]

Or we need to insure that the Hi-Brow actually serves some beers, as in:

\[
\{\text{person}|(\exists \text{beer}(\exists \text{price}(\text{serves(hibrow, beer, price)})) \land
\forall \text{beer}(\exists \text{price}(\text{serves(hibrow, beer, price)}) \Rightarrow \text{likes(likes, beer)}))\}
\]

(c) Who likes all the beers Hodas likes?

As above the core is:

\[
\{\text{person}|(\forall \text{beer}(\text{likes(hodas, beer)}) \Rightarrow \text{likes(person, beer, price)}))\}
\]

But similar constraints are needed, in case Hodas doesn't like any beers. So it should look like either:

\[
\{\text{person}|((\exists \text{beer}(\text{likes(person, beer)})) \lor \exists \text{bar}(\text{frequents(person, bar)})) \land
\forall \text{beer}(\text{likes(hodas, beer)} \Rightarrow \text{likes(person, beer, price)}))\}
\]

or

\[
\{\text{person}|(\exists \text{beer}(\text{likes(hodas, beer)})) \land
\forall \text{beer}(\text{likes(hodas, beer)} \Rightarrow \text{likes(person, beer, price)}))\}
\]
(d) What bars does Hodas go to that serve all the beers he likes for less than $3.00?

\[
\{\text{bar} \mid (\text{frequents}(\text{hodas}, \text{bar}) \land \forall \text{beer}(\text{likes}(\text{hodas}, \text{beer}) \Rightarrow (\exists \text{price}(\text{serves}(\text{bar}, \text{beer}, \text{price}) \land \text{price} < 3.00)))}
\]

(e) What bars are frequented by the drinkers who like all the beers that Hodas likes?
I interpret this to mean that each bar in the answer is frequented by at least one such drinker.

\[
\{\text{bar} \mid (\exists \text{person} (\text{frequents}(\text{person}, \text{bar}) \land \forall \text{beer}(\text{likes}(\text{hodas}, \text{beer}) \Rightarrow \text{likes}(\text{person}, \text{beer}))}
\}
\]

4. Questions of Encoding II:

Give first order encodings of each of the following facts:

(a) “Every fungus is either a mushroom or a toadstool.”

\[
\forall x(\text{fungus}(x) \Rightarrow (\text{mushroom}(x) \lor \text{toadstool}(x)))
\]

(b) “Every boletus is a fungus.”

\[
\forall x(\text{boletus}(x) \Rightarrow \text{fungus}(x))
\]

(c) “Toadstools are poisonous, as are peach pits.”

\[
\forall x(\text{toadstool}(x) \Rightarrow \text{poisonous}(x)) \land \forall x(\text{peachpit}(x) \Rightarrow \text{poisonous}(x))
\]

or, alternatively:

\[
\forall x((\text{toadstool}(x) \lor \text{peachpit}(x)) \Rightarrow \text{poisonous}(x))
\]

(Because, \((A \lor B) \Rightarrow C\) is equivalent to \((A \Rightarrow C) \land (B \Rightarrow C)\).)

(d) “A boletus is not a mushroom.”

(e) “This thing is a boletus.”

\[
\text{boletus}(\text{thisThing})
\]

(I also accepted \(\forall x(\text{thisThing}(x) \Rightarrow \text{boletus}(x))\).)