Training Techniques and Tips

Launder Input

• If the network is to learn a function, make sure that the samples are functional, i.e. that they don’t specify conflicting outputs for the same input value.

• For example, if clinical outcomes are the output, it is possible that two patients with the same symptoms have different outputs; presenting these to the network will mean that it will never fully converge.
BackProp Technique & Tricks
(Some of these apply to General Neural Networks)

(Two References:
Neural Networks Tricks of the Trade, Orr and Muller, eds., LNCS 1524
http://www.dontveter.com/bpr/bpr.html)

• Choose examples with maximum information content

 – Shuffle the training set so that successive samples rarely belong to the same class.

 – Present input examples that produce a large error more frequently than ones that produce a small error.

Technique & Tricks

• Normalize the inputs
 – Better if mean of a particular variable is near 0.
 • Then weight changes are less likely to be synchronized, since some will be positive, others negative.
 • Therefore, subtract the actual mean from the variable before training.
 – Better if the variables are scaled to have similar auto-covariances, defined as
 (sum-of-squares of variable)/(number of samples)
 • Then the weights will learn at similar rates.
 • Exception: When some variables are known in advance to be of less significance.
Technique & Tricks

• Decorrelate the inputs
 – Better if no two input variables are correlated.
 – Correlated inputs analogous to having linearly dependent variables in a linear system.
 – A technique called PCA (Principal Components Analysis), aka Karhunen-Loeve Expansion, can be used to remove linear correlations.
 – We will look at PCA later; PCA itself can be done by a PCA neural network.

Summary of Input Normalization

- Subtract means
- Scale
- PCA
BackProp Technique & Tricks

- Prefer tansig (hyperbolic tangent) rather than logsig for inner layers.
 - tansig output is symmetric about origin, logsig is not.
 - tansig will more likely produce outputs close to 0 for the next stage of the network.
- Some recommend adding a small linear constant to the output of tansig to “avoid flat spots”

Piecewise Quadratic Approx. to tanh (faster to compute)

<table>
<thead>
<tr>
<th>x</th>
<th>$f(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x > 1.92033$</td>
<td>0.96016</td>
</tr>
<tr>
<td>$0 < x \leq 1.92033$</td>
<td>$0.96016 - 0.26037 \times (x - 1.92033)^2$</td>
</tr>
<tr>
<td>$-1.92033 < x < 0$</td>
<td>$0.26037 \times (x + 1.92033)^2 - 0.96016$</td>
</tr>
<tr>
<td>$x \leq -1.92033$</td>
<td>-0.96016</td>
</tr>
</tbody>
</table>

Derivative: $\tanh'(x) = 1 - \tanh^2(x)$ can still be used.
Choice of Target Values

• Choosing target values of +1, -1 for a tansig causes the neuron to be driven toward the saturation region.
• To get into this region, the weights are large and may become “stuck” because small gradient values will not change them sufficiently.
• It may be better to choose the targets offset from these saturation values, or to scale the tansig to get the same effect, e.g.
 \[f(x) = 1.7159 \tanh\left(\frac{2x}{3}\right) \], which has a maximum 2nd derivative where the function’s value is +/- 1.

Weight Initialization

• Assuming that the training set has been normalized and the previous sigmoid is used,
• Draw the initial weights from a distribution, such as a uniform distribution, with mean 0 and standard deviation \(1/\sqrt{m}\) where \(m\) is the fan-in (number of inputs to the node).
• Increases likelihood that the input to the sigmoid will have a standard deviation of 1 (since the latter is the sqrt of the sum of the squares of the weights, for normalized input).
Learning Rates

- Ideally, each weight should have its own learning rate. See the *Neural Networks Tricks of the Trade*, Orr and Muller, eds., LNCS 1524 for how to choose learning rate based on 2nd derivatives.
- As a substitute, each neuron, or each layer could have its own learning rate.
- Learning rates should be proportional to the sqrt of the number of inputs to the neuron.
- Weights in earlier layers should be larger than those in later layers, since the earlier layers tend to have a smaller 2nd derivative of the MSE.

Second Derivatives by Layer

Fig 7.21. Multilayered architectures: the second derivative is often smaller in lower layers.
Validation Technique ("Cross-Validation") & Early Stopping

- Split the training set into training and validation subsets, e.g. 2:1 or 5:1 ratio.
- Train only on the training subset; use the validation set for MSE, every so often (e.g. every 5 epochs).
- **For early stopping:** Stop training as soon as the validation error goes up.
- Use the weights before the error went up.
- Rational: Even though a lower minimum might have been reached, the local minima tend to be fairly close in value in practice.

A Validation Error Curve

See Neural Networks Tricks of the Trade, Orr and Muller, eds., LNCS 1524 for further refinements of the validation idea.
Over-Fitting

- It is possible for a network to over-fit the data, meaning that it learns small variations in the data which might actually be due to noise.
- Another way of saying this is that the network does not generalize well; it is too specialized.
- **Validation** is one technique used to help avoid over-fitting.
- Over-fitting can result if the network has too many neurons at its disposal.

Sizing a Network

- **Given a problem:**
 - How many layers?
 - How many neurons per layer?
 - What activation functions?
Layers

- Theoretically, any function can be emulated over a given range by a network with just one hidden layer and one output layer (two layers total), with sufficient neurons in that layer.

- Practically, 2-3 layers suffice for large families of problems, although more may be used, especially when special feature-selection layers are used, as in the zip-code recognition network.

Neurons

- Choose number of neurons based on the assessed complexity within a layer (number of crests and valleys of a function, for example).

- Two approaches for experimental determination:
 - Start with a large number of neurons and prune.
 - Start with a small number of neurons and build up.
Pruning

- Negligible weights can be eliminated (set to 0).
- If all input weights to a node are 0, the node can be eliminated.
- If all weights a node feeds are 0, the node itself can be eliminated.
- Vary weights w to see whether $\frac{\partial J}{\partial w}$ is significant; if not, prune the weight.

Building

- Cascade-Correlation Network (Fahlman) adds one neuron at a time, testing the quality of the results and stopping when they are adequate.

- Training by correlation is a technique to be explored later.

- Problem with cascade correlation is that each added neuron is effectively a new layer.
Doubling

• Start with a small number of neurons in the inner layer.
• If at the conclusion of a training cycle, the MSE is inadequate, repeat with double the number of neurons.

Number of Training Samples for a Given Size Network

• Baum-Hausler rule (1989):

 Necessary condition:

 \[(\text{number of samples}) > \frac{W}{1-a}\]

 where \(W\) is the number of weights in the network and \(a\) is the desired accuracy on the test set.

 Sufficient condition:

 \[(\text{number of samples}) \geq \log\left(\frac{N}{1-a}\right) \cdot \frac{W}{1-a}\]

 where \(N\) is the number of neurons.