Using Energy-Minimizing Networks to Solve Constraint-Satisfaction Problems
Constraint-Satisfaction Problems

- **Minimum-energy seeking networks** (e.g. using annealing) can be used to find solutions to constraint-satisfaction problems (problems of finding optima, subject to constraints that can’t be violated, rather than as computing a function).

- A number of other such problems have been studied in this context.
The problem is: given a set of n nodes ("cities") with a specified minimum cost between each pair of nodes, find a permutation ("tour") of the nodes that minimizes the summed costs between the nodes in the permutation sequence.

- The costs are symmetric, and the general problem does not require that there be any Euclidean relationship among the nodes.
Finding Solutions to the TSP using a Hopfield Net

- Global minimum is not necessarily found, although this might be doable with a Boltzmann style algorithm instead.
- The difficulty is encoding the instance of the TSP as a net:

 minimal cost \[\iff\] minimal energy
TSP Formulation

- Represent a given problem as a matrix:
 - Cities correspond to rows.
 - Positions on the tour correspond to columns.
- Example:

```
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
```

means B occurs first on the tour, D occurs second, A third, E fourth, C fifth.
TSP Formulation

- Assume \(\{0, 1\} \) values rather than \(\{-1, 1\} \).
- The neurons correspond to entries in the matrix (\(n^2 \) neurons for \(n \) cities).
- Neurons in a row have inhibitory connections from other neurons in same row:
 - If one neuron is on, then others tend to be off, especially in minimum energy state.
- Similarly for neurons in the same column
TSP Formulation

- Need to favor tours that include *all* n cities, as opposed to just a subset of them.

- Need to represent costs between cities as neural weights:
 - Want to inhibit selection of adjacent cities in proportion to the cost between those cities.
 - Let X and Y be rows (cities) and i and j be columns (positions).
Using the expression for energy in a Hopfield net $w_{ij}y_iy_j$, the corresponding energy is computed to have the form

$$E = A \sum_{i \neq j} y_iy_j + B \sum_i y_i \sum_{Y \neq X} y_iy_Y + C \left(\sum_i y_i - n \right)^2 + D \sum_i \sum_{Y \neq X} c_{XY}y_i \left(y_{Y,i+1} + y_{Y,i-1} \right)$$

At energy minimum, only the last term, which represents the tour cost, is non-zero.

We’ll explain these terms one at a time.
\[A \sum_{X} \sum_{i,j \neq i} y_{Xi} y_{Xj} \]

- The outer summation is over all cities \(X \). The inner summations are over all pairs of distinct positions.
- There is a contribution of +1 if the same city occurs in more than one position in the tour.
- Therefore this term should ideally be 0.
The outer summation is over all positions in the tour. The inner summations are over all pairs of distinct cities in position i.

There is a contribution of +1 if the same city occurs in more than one position in the tour.

Therefore this term should ideally be 0.
This term tries guarantees that all cities get used. If the summation is \(n \), the term is 0. If it is less than \(n \), the term will be positive.

This term should ideally be 0.
\[D \sum_{i} \sum_{X \neq Y} c_{XY} y_{Xi} (y_{Y,i+1} + y_{Y,i-1}) \]

- This term represents the cost of the tour. The outer sum is over all positions in the tour, the inner sums over all distinct pairs.

- \(c_{XY} \) represents the cost of going from X to Y. This term gets added provided X is at the \(i^{th} \) position in the tour, represented by \(y_{Xi} = 1 \), and Y is either at the \((i+1)^{th} \) or \((i-1)^{th} \) position (it can’t be at both, by the other constraints). \((i+1) \) and \((i-1) \) are computed mod n.
In order to get the energy function to come out as specified, choose the weight from X_i to Y_j as

$$w_{X_iY_j} = -A\delta_{XY} (1- \delta_{ij}) - B \delta_{ji} (1- \delta_{XY}) - C - Dc_{XY}(\delta_{j,i+1} + \delta_{j,i-1})$$

for appropriate constants A, B, C, D.

δ_{ji} is the Kronecker delta (1 if $i = j$, 0 otherwise).
Necker Cube “Boltzmann” Demo
(http://www.cs.cf.ac.uk/Dave/JAVA/boltzman/Necker.html)
Constraints Represented

- Each vertex can have only one (of two possible) interpretation. Therefore there are negative weights connecting units representing different interpretations of the same vertex.

- The same interpretation cannot be given to more than one vertex - so units representing the same interpretation are connected with negative weights.

- Units from the same interpretation should be on together, so locally consistent units are connected with positive weights.
Necker Cube Demo

Neurons representing whether vertex is shown in **front** or **back**

Blue weights are positive, red are negative.