Control Applications of Neural Nets

Control Systems in General

- Vocabulary:
 - “Plant” or “Process”: The thing being controlled
 - “Controller”: The thing doing the controlling
 - Generally both are functions responding to time-varying input.
“Copying” an Existing Controller with a Neural Net

Open-Loop Control
Open-Loop Control

- Description of plant (for all time t):
 \[\text{response}(t) = \text{plant}(\text{actuator}(t)) \]

- Description of controller:
 \[\text{actuator}(t) = \text{control}(\text{desired}(t)) \]

- Thus
 \[\text{response}(t) = \text{plant}(\text{control}(\text{desired}(t))) \]

- To make \(\text{response}(t) = \square \text{desired}(t) \), make
 \[\text{control} = \text{plant}^{-1} \text{ (the inverse function)} \]

Training a neural net to compute \(\text{plant}^{-1} \)

![Diagram of neural network](image-url)
Issues with “inverse” form of control

- plant function might not be known analytically (could be learned by an NN though)
- plant function might not be invertible
- plant function could be time-varying (which would require a time-varying net)

- The open-loop approach might be unstable.
- “Feedback control” can help with issue of stability.

Feedback Control

- Earliest known example?
 - How to keep the oil in a reservoir (such as a lamp) at a specific level?
 - Answer: Monitor the level; when it drops below the desired level, add more oil, until it reaches the desired level.
 - Philon’s lamp regulator (220 b.c.)
Philon’s Lamp Regulator

Steam-Engine Governor

James Watt, 1748
Flyball Governor
(James Watt, 1748)

Block Diagram of Steam Engine

steam → Plant → motion

desired error + actual

Valve

Plant

Speed sensor
Classical Symbolic Reasoning (aside)

Using, for example, Laplace Transforms, \textit{function composition} is treatable as \textit{multiplication}.

\[\text{error} = \text{desired} - \text{response}/D, \quad D \text{ a scalar} \]

\[\text{response} = P \cdot G \cdot \text{error} \]

Substituting,
\[\text{response} = P \cdot G \cdot (\text{desired} - \text{response}/D) \]
\[\text{response}(1+PG/D) = PG\cdot\text{desired} \]
\[\text{response} = \text{desired} \cdot PG/(1+PL) \]

where \(L = G/D \) is the “\textit{open loop gain}”

If we can make \(L >> 1 \), \(\text{response} = \text{desired} \cdot PG/PL = \text{desired} \cdot G/L \)
i.e. \(\text{response} = \text{desired} \cdot D \)
Copying a Plant as a Neural Net
(Example to follow)

Pole-Balancing
(pole-cart, broom balancing)
Approaches

- Design a controller using **classical** approach (example: matlab `pendemo`)

- Develop **parameterized controller**, then **learn parameters** using neural net by training (Widrow’s approach #1)

- Widrow #2 (Tolat & Widrow)

Pole-Cart Controller

\[F(t) = a \dot{x}(t) + b \ddot{x}(t) + c \dot{\theta}(t) + d \ddot{\theta}(t) \]
Widrow Approach #1 to Pole-Cart

- Used Adaline to “observe” an operating controller, with input values x, x', q, q'
- Train Adaline to emit appropriate force on cart

Widrow #2 (Tolat & Widrow)

- **Pairs of images** of pole position were input, taken at successive points 100ms apart
- 5x11 pixel image used
- Equations were not used; instead a “teacher’s input” was given indicating force on cart based on a given image pair. Only the **sign** of this force was actually used (“bang-bang” control).
4225 image pairs used in training

Adaline with 110 weights + threshold was sufficient to balance the pole

Error 3.4% after only 1000 training cycles
A related train-by-watching-user Demo
http://neuron.eng.wayne.edu/bpBallBalancing/ball5.html

Pole-Balancing Demos

- `matlab/broom2`: run `dbroom_ndemo` (2-broom demo by Wan, et al.; does not show BPTT training phase)

- Jeff Lawson ‘99 and Chris Lewis ‘99 demos, using
 - AHC (Adaptive Heuristic Critic)
 - SANE (Symbiotic Adaptive Neuro-Evolution)
Actor-Critic Methods

- Explicit representation of policy as well as value function.
- “Value” = expected reward from this state under a given policy
 \[V^\pi(s) \]
- Value satisfies dynamic programming equations
- Value can be estimated using TD, etc.
- Train both policy and value functions.

Looking Forward

- Lots of current interest in
 - neural control
 - neuro-fuzzy control
 (neural networks + fuzzy logic)
 - neuro-evolutionary control
 (neural networks + evolution programs)