Neural Networks: an Eclectic Discipline

- Biology
- Neuropsychology
- Psychology
- Learning & Cognition
- Engineering
- Pattern Classification, Control, Robotics
- Computer Science
- Artificial Intelligence
- Mathematics
- Optimization
- Economics
- Forecasting
- Time Series
- Physics
- Dynamical Systems

Text: “NND”

Reprint available from Huntley Bookstore, or University of Colorado Bookstore at 303-492-3648.

Office Hours (1249 Olin):
- Note: 1249 is in the SW corner of Olin
- Monday, Tuesday, Wednesday 4-5
- By drop-in (as available)
- By appointment:
 - email keller@cs.hmc.edu
 - phone 621-8483
- Crisis center: 621-2373

Course Outline

Please Refer to Web Page for details:
http://www.cs.hmc.edu/courses/current/cs152

Biological Intelligence

- Intelligence, the ability to make decisions based upon input from the environment.
- Intelligence is realized by a network of neurons, for example the brain and the attendant sensory and motor neurons.
“Neurons R US”
- Not only our intelligence, but all aspects of our behavior, are the result of neural activity:
 - emotions
 - memory
 - reflexes
 - habits
 - likes and dislikes
 - addictions

Approaches to Artificial Intelligence
- **Reverse Engineering of Biology**
 - Understand real neurons well enough to model
 - *Simulate* neural behavior
- **Simulated Evolution**
 - Provide basic evolutionary mechanism for neurons
 - *Evolve* intelligent behavior
- **Artificial Neural Networks**
 - Develop a parameterized model for a class of problems
 - *Learn* the parameters

Fundamental Problems for a Given Neural Model
- How to *represent* information?
- How to characterize the computational *capability* of the model?
- How to achieve learning in the model?

Some Applications of Artificial Neural Networks (1 of 5)
- **Optical character recognition**
 - U.S. mail zip-code recognizer
 - Kanji: 4000 chars in 15 fonts, 99% accurate, 100k chars/sec (Sharp & Mitsubishi)
- **Communications**
 - Adaptive noise cancellation
 - Headphones
 - Conference telephones

Applications (2 of 5)
- **Process control**
 - Electric arc furnace control: 30MVA, 50kamp transformer, $2M savings
 - Steel-rolling mill controller
 - Copier uniformity control (Ricoh)
 - Anti-lock brakes, etc. (Ford)
 - Food process control (M&M)
 - Particle beam focusing (SLAC)
 - Flourescent bulb mfg. (GE)

Applications (3 of 5)
- **Financial analysis**
 - Prediction of commodities market (18% vs. 12.3% by traditional methods)
 - Mortgage risk evaluator (AVCO, Irvine)
 - Real-estate evaluation (Foster Onsley Conley)
 - Portfolio management (LBS Captial)
 - Currency trading (Citibank)
- **Crime prevention**
 - Bomb sniffer (JFK airport)
 - Credit card fraud detection (Visa, etc.)
Applications (4 of 5)

- Object classification
 - Grading grains from video images
 - Forensics: glass classification
 - High-energy physics: particle identification
- Warfare
 - Missile guidance
- Optical telescope focusing

Applications (5 of 5)

- Biomedical
 - Clinical diagnoses
 - Patient mortality predictions
 - Protein structure analysis
 - Electrode placement
- Speech recognition
- Game playing
 - World backgammon champion

Reference for Biological Aspects

Some Physiological Aspects of Neurons

Neuron Cell (top half)

Neuron Cell (bottom half)

[Axon can be a meter or more long (e.g. spine-to-toe).]
Photomicrograph of one neural cell (from cerebral cortex)

Structure of one neuron

Photomicrograph of network of neural cells (from the hippocampus region of the brain)

Composition of the Brain

- 10% neurons
- 90% glial ("glue") cells

Myelin sheath around axon (consists of glial cells)

Myelin Sheath (cont’d)

- Acts as insulator
- Current can flow out only at junctions (called nodes of Ranvier) to other axons
- Demyelinating diseases:
 - Myelin deficit in newborns
 - MS (multiple sclerosis)
 - ALS (amyotrophic lateral sclerosis, "Lou Gehrig's disease")
Dendrite Information Flow

- Normally dendrites receive information from synapses of other neurons.
- In some cells, both input and output can occur through the same set of dendritic structures.

In addition to signal, axon carries:

- Construction material (proteins)
- Nutrients (in the form of mitochondria)
- Enzymes

Experiment determining chemical nature of transmission, Loewi, 1921

Inter-Neuron Signaling

- An ionic (electro-chemical) reaction carries the signal across the gap between a synapse of one neuron and a dendrite of the next.
- The strength of this connection is an abstraction of the efficiency of the transfer.
- In artificial neural networks, this strength is represented by a numeric weight.

Chemical Synapse

Electronmicrograph of one synapse/dendrite connection

Schematic sometimes used (symbolic of synaptic clefts)

Ionc neurotransmitter reaction

Terminology

- **neurotransmitters**: molecules that traverse from synapse to dendrite through ion diffusion.
- **spiking**: abrupt change of output voltage
- **depolarization**: change in net input voltage toward a threshold value, at which it will "spike"
- **action potential**: the voltage change produced when the neuron spikes

All-or-None Behavior

- The action potential is essentially binary-valued.
- The strength of the stimulus does not matter, except insofar as whether it is over or above a threshold.

Triggering phenomenon

Refractory Period

- A neuron cannot spike again while it is already spiking, or for some time afterward.
- The “waiting time” until the next spike can occur is called the refractory period.

Intensity

- Because of the all-or-none behavior, the neuron indicates intensity of stimulation by the frequency of spikes, not amplitude.
- Because of the refractory period, there is a maximum frequency, at which the frequency saturates.

Spiking Frequency of a Neuron as a Function of (Artificial) Stimulus Magnitude

- Larger stimulus higher frequency of output spiking

Intensity Abstraction

- In artificial neural networks, we associate an output value with a neuron, which might be continuous, but have an upper limit.
- This can be viewed as a convenient abstraction of what is really the value of spiking frequency.

Patterns

- In addition to frequency, information can be encoded based on whether the neuron is spiking regularly ("beating") or in bursts ("bursting").

Various Firing Patterns

Different Patterns of Responses to a Given Stimulation

Sizes, Scale
- Human estimated to have $10^{10} - 10^{11}$ neurons.
- One neuron may connect to $10^2 - 10^3$ others.
- Therefore $10^{12} - 10^{14}$ connections are present.

Speeds
- Switching speed ~ 1 kHz (1 million times slower than a computer)
- Conduction speed ~ 100 m/s (vs. near speed of light in a computer)
- Switching energy ~ 10^{-16} joules/op (vs. 10^{-5} joules/op for today’s computers)

Human Nervous System
- Accounts for 1-2% of body’s weight
- Consumes ~ 25% of body’s energy

Transition to Artificial Neural Networks

Neural network schematic
- Synaptic “weights” (strength of connection)
- Many-to-many connections
Neural network (further schematized)

Generality

- Do we lose generality assuming a regular connection pattern?
- Do we lose generality assuming no cycles?

Abstract Functional Characteristics of Neurons

- Weighted sum multiple synaptic inputs
 - positive weight: “excitatory”
 - negative weight: “inhibitory”
- Threshold triggering phenomenon:
 - weighted sum of inputs must exceed threshold in order to cause an event.

How might a neural network learn?

Hebb’s Postulate, 1949

Hebb’s Postulate

A NEUROPHYSIOLOGICAL POSTULATE

Let us assume that the persistence or repetition of a nervous activity (or “trace”) tends to induce lasting cellular changes that add to its efficiency. The assumption is one to be precisely stated as follows: When an axon of cell A is near enough to the soma of cell B to impress its impulses, and repeatedly or persistently takes part in exciting it, some growth process or metabolic change takes place in one or both cells such that A’s efficiency, or B’s excitability, is increased.
Hebb’s Postulate

When an axon of cell A is near enough to excite a cell B and repeatedly or persistently takes part in firing it, some growth process or metabolic change takes place in one or both cells such that A’s efficiency, as one of the cells firing B, is increased.

Hebb Restated (Levitan and Kaczmarek)

“When a postsynaptic neuron becomes depolarized [fires], it generates a biochemical reaction or a trophic factor that stabilizes [strengthens] the excitatory synapses that are firing at that time.”

Colloquial Hebb

Neurons that fire together wire together.

Levitan and Kaczmarek

“An important aspect of [Hebb’s] hypothesis is that a given presynaptic input to a cell need not, by itself, be of sufficient strength to induce a large depolarization in its target. If that input is fired at the same time as a number of other inputs, and their combined action depolarizes the cell, all of these inputs will tend to be stabilized.”

Levitan and Kaczmarek (cont’d)

- “If, in contrast, a given input fires asynchronously with most of the other inputs onto that cell, this input will tend to be eliminated.”
- [This could be called “anti-Hebbian” learning.]

Levitan and Kaczmarek (cont’d)

Hebb’s rule. Excitatory synapses that successfully stimulate a postsynaptic neuron, or are active when the postsynaptic neuron is depolarized, are selectively stabilized.
Some NN Historical Highlights
- 1943: McCulloch and Pitts, Linear Threshold Logic Gate models
- 1949: Hebb, proposed Learning principle
- 1957: Rosenblatt's Perceptron
- 1960: Widrow & Hoff's Adaline
- 1969: Minsky & Papert (MIT), Limitations of perceptrons

Historical Highlights (cont’d)
- 1982: Hopfield (Princeton, then Caltech) Hopfield networks
- 1986: Rumelhart and McClelland, popularized backpropagation in multi-layer perceptrons, published "Parallel Distributed Processing"

Characteristics of Simple ANN Models
- "weight" = strength of connection
- threshold = value of weighted input below which no response is produced
- signals may be:
 - real-valued, or
 - binary-valued:
 - "unipolar" \{0, 1\}
 - "bipolar" \{-1, 1\}

McCulloch-Pitts Model, 1943
- Synchronous operation
- Binary (uni-polar) signals
- Linear threshold gates

McCulloch-Pitts Neural Model
\[
\text{output} = \begin{cases}
1 \text{ if } w_1 x_1 + w_2 x_2 - w_3 x_3 > 0 \\
0 \text{ otherwise}
\end{cases}
\]

How Powerful is a Network of McCulloch-Pitts Neurons?
<table>
<thead>
<tr>
<th>Can any switching function be represented?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kleene’s paper, 1956</td>
</tr>
<tr>
<td>- “Representation of Events in Nerve Nets”</td>
</tr>
<tr>
<td>- Used McCulloch-Pitts model with possible feedback connections</td>
</tr>
<tr>
<td>- Assumed synchronous model (not realistic?)</td>
</tr>
<tr>
<td>- “Events” are essentially what we now call regular expressions</td>
</tr>
<tr>
<td>- Provides an exact characterization of what McCulloch-Pitts network can do</td>
</tr>
</tbody>
</table>