Self Organization of a Massive Document Collection

Teuvo Kohonen
Samuel Kaski
Krista Lagus
Jarkko Salojarvi
Jukka Honkela
Vesa Paatero
Antti Saarela
Their Goal

- Organize large document collections according to textual similarities
 - Search engine
- Create a useful tool for searching and exploring large document collections
Their Solution

- Self-organizing maps
 - Groups similar documents together
 - Interactive and easily interpreted
 - Facilitates data mining
Self-organizing maps

- Unsupervised learning neural network
- Maps multidimensional data onto a 2 dimensional grid
- Geometric relations of image points indicate similarity
Self-organizing map algorithm

- Neurons arranged in a 2-dimensional grid
- Each neuron has a vector of weights
 - Example: R, G, B values
Self-organizing map algorithm (cont)

- Initialize the weights
- For each input, a “winner” is chosen from the set of neurons
- The “winner” is the neuron most similar to the input
 - Euclidean distance:
 \[\sqrt{(r_1 - r_2)^2 + (g_1 - g_2)^2 + (b_1 - b_2)^2 + \ldots} \]
Self-organizing map algorithm (cont)

- Learning takes place after each input
- \(n_i(t + 1) = n_i(t) + h_{c(x),i}(t) \ast [x(t) - n_i(t)] \)
 - \(n_i(t) \) weight vector of neuron i at regression step t
 - \(x(t) \) input vector
 - \(c(x) \) index of “winning” neuron
 - \(h_{c(x),i} \) neighborhood function / smoothing kernel
 - Gaussian
 - Mexican hat
Self-organizing map example

6 shades of red, green, and blue used as input

500 iterations
The Scope of This Work

- Organizing massive document collections using a self-organizing map
- Researching the up scalability of self-organizing maps
Original Implementation

- WEBSOM (1996)
- Classified ~5000 documents
- Self-organizing map with “histogram vectors”
 - Weight vectors based on collection of words whose vocabulary and dimensionality were manually controlled
Problem

- Large vector dimensionality required to classify massive document collections
 - Aiming to classify ~7,000,000 patent abstracts
Goals

- Reduce dimensionality of histogram vectors
- Research shortcut algorithms to improve computation time
- Maintain classification accuracy
Histogram Vector

- Each component of the vector corresponds to the frequency of occurrence of a particular word.
- Words associated with weights that reflect their power of discrimination between topics.
Reducing Dimensionality

- Find a suitable subset of words that accurately classifies the document collection
 - Randomly Projected Histograms
Randomly Projected Histograms

- Take original d-dimensional data X and project to a k-dimensional ($k \ll d$) subspace through the origin.
- Use a random $k \times d$ matrix R, the elements in each column of which are normally distributed vectors having unit length:

$$R_{k \times d} \cdot X_{d \times N} \Rightarrow \text{new matrix } X_{k \times N}$$
Random Projection Formula

\[k \begin{bmatrix} \text{RANDOM} \\ d \end{bmatrix} \begin{bmatrix} \text{INPUT} \\ N \end{bmatrix} = k \begin{bmatrix} \text{PROJECTED} \\ N \end{bmatrix} \]
Why Does This Work?

- Johnson – Lindenstrauss lemma:
 “If points in a vector space are projected onto a randomly selected subspace of suitably high dimension, then the distances between the points are approximately preserved”

- If the original distances or similarities are themselves suspect, there is little reason to preserve them completely.
In Other Words

- The similarity of a pair of projected vectors is the same on average as the similarity of the corresponding pair of original vectors.
 - Similarity is determined by the dot product of the two vectors.
Why Is This Important?

- We can improve computation time by reducing the histogram vector’s dimensionality.
Loss in Accuracy

<table>
<thead>
<tr>
<th></th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vector space model</td>
<td>60.6</td>
</tr>
<tr>
<td>Normally distributed \mathbf{R}</td>
<td>59.1</td>
</tr>
</tbody>
</table>
Optimizing the Random Matrix

- Simplify the projection matrix R in order to speed up computations
- Store permanent address pointers from all the locations of the input vector to all locations of the projected matrix for which the matrix element of R is equal to one

<table>
<thead>
<tr>
<th></th>
<th>Accuracy</th>
<th>Standard deviation due to different randomization of R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normally distributed R</td>
<td>59.1</td>
<td>0.4</td>
</tr>
<tr>
<td>Thresholding to $+1$ or -1</td>
<td>59.4</td>
<td>0.2</td>
</tr>
<tr>
<td>5 ones in each column</td>
<td>58.2</td>
<td>0.3</td>
</tr>
<tr>
<td>3 ones in each column</td>
<td>56.8</td>
<td>0.2</td>
</tr>
<tr>
<td>2 ones in each column</td>
<td>55.4</td>
<td>0.3</td>
</tr>
</tbody>
</table>
So...

- Using randomly projected histograms, we can reduce the dimensionality of the histogram vectors
- Using pointer optimization, we can reduce the computing time for the above operation
Map Construction

- Self-organizing map algorithm is capable of organizing a randomly initialized map.
- Convergence of the map can be sped up if initialized closer to the final state.
Map Initialization

- Estimate larger maps based on the asymptotic values of a much smaller map
 - Interpolate/extrapolate to determine rough values of larger map
Optimizing Map Convergence

- Once the self-organized map is smoothly ordered, though not asymptotically stable, we can restrict the search for new winners to neurons in the vicinity of the old one.
- This is significantly faster than performing an exhaustive winner search over the entire map.
- A full search for the winner can be performed intermittently to ensure matches are global bests.
Final Process

- Preprocess text
- Construct histogram vector for input
- Reduce dimensionality by random projection
- Initialize small self-organizing map
- Train the small map
- Estimate larger map based on smaller one
- Repeat last 2 steps until desired map size reached
Performance Evaluation

- Reduced dimensionality
- Pointer optimization
- Non-random initialization of the map
- Optimized map convergence
- Multiprocessor parallelism

<table>
<thead>
<tr>
<th></th>
<th>Classification accuracy (%)</th>
<th>Quantization error</th>
<th>Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traditional SOM</td>
<td>58.2 ± 0.2</td>
<td>0.799 ± 0.001</td>
<td>2550 ± 40</td>
</tr>
<tr>
<td>Shortcut methods</td>
<td>58.0 ± 0.2</td>
<td>0.798 ± 0.002</td>
<td>241 ± 3.5</td>
</tr>
</tbody>
</table>
Largest Map So Far

- 6,840,568 patent abstracts written in English
- Self-organizing map composed of 1,002,240 neurons
- 500-dimension histogram vectors (reduced from 43,222)
- 5 ones in each column of the random matrix
What It Looks Like
Conclusions

- Self-organizing maps can be optimized to map massive document collections without losing much in classification accuracy.
Questions?