types of techniques

- simple pixel modification
- interpolation/extrapolation
- compositing
- convolution
- dithering
- warping
- morphing
- misc. effects

dissolve

- film/video technique to fade from one shot to another

blending across time

\[\alpha(t)I_0 + (1-\alpha(t))I_1 \]

\[\alpha(t) \]

\[0 \]

\[t_0 \]

\[t_1 \]

\[t \]

blending example

morphing = warping + blending

morphing = warping + blending
morphing = warping + **blending**

morphing how to

specifying the warp

start

finish

specifying the warp

start

middle

interpolate endpoints for in-betweens

finish

computing the warp between adjacent images

each line moves in time
computing the warp between adjacent images—single line

warp – single line

u is fraction along line, v is distance to line

warp – single line

u is fraction along line, v is distance to line

consider some special cases

warp – single line

consider some special cases

warp – multiple lines

consider some special cases
warp - multiple lines

compute weight for each line pair based on distance to p in destination

\[w = \left(\frac{L}{d} \right)^b \]

where \(L \) is the length of the line segment, \(d \) is the distance from \(p \) to the line segment, \(a, b, \) and \(c \) are parameters to control the effect

warp - multiple lines

compute source for each pair of lines using one-line algorithm

calculate displacement from \(p \) to each source point

warp - multiple lines

compute weighted displacement from \(p \) in source

demo
do it yourself