cheap tricks

- texture mapping
- procedural texture mapping
- bump mapping
- transparency mapping
- depth of field
- lens effects
- jittering
- soft shadows

texture mapping

"glue" image to surface

![Texture Mapping Image](image1)

![Texture Mapping Triangle](image2)
What is \(f(p) \)?

A point \(q \) on the triangle \(T \) can be uniquely represented as \(q = t_0 + \beta u + \gamma w \) where \(\beta \geq 0 \), \(\gamma \geq 0 \), \(\beta + \gamma \leq 1 \).

Computing \(f(p) \):

- Compute \(f(u) = f(t_1) - f(t_0) \) and \(f(w) = f(t_2) - f(t_0) \).
- Compute \(f(p) = f(t_0) + \beta f(u) + \gamma f(w) \).

What is image color at \(f(p) \)?

Need to resample! For your ray tracer use bilinear interpolation.

Using the color:

1. Use as pixel color.
2. Use as diffuse and specular coefficient of surface at \(p \).
3. Use as diffuse coefficient of surface at \(p \).
a point p on the surface can be represented relative to c and r, t, u.

\[p - c = \alpha r + \beta t + \gamma u \]

where
\[\alpha = r \cos(\theta_p) \cos(\phi_p) \]
\[\beta = r \cos(\theta_p) \sin(\phi_p) \]
\[\gamma = r \sin(\theta_p) \]

\(\theta_p \) and \(\phi_p \) are the angles in degrees and \(w, h \) are the image width and height in pixels.

\[f(p) = (w_{\theta_p}/360, h_{\phi_p}/360) \]

as before

- resample image
- use color as...
problems

• given \(p \) compute \(\phi, \theta \)

you can do that!

• poles

test for pole and use default texture coordinate

• seams

 - use good textures

 - overlap & blend or mix

 - don’t look there

 - 3d textures

3d textures

• use stack of images

how do we generate these images?

cheap tricks

• texture mapping

• procedural texture mapping

• bump mapping

• transparency mapping

• depth of field

• lens effects

• jittering

• soft shadows

procedural texture mapping

• procedure returns a texture color for any point in 3d space (note this is not an image stack)

• sample to find texture for surface

procedural textures

• advantages

 - don’t need to find a mapping from a (complex) 3d surface to a 2d texture image

 - concise representation of texture

• disadvantages

 - ad hoc techniques cannot duplicate photographs
Perlin Noise - 1D Example

Step 1: Generate discrete noise function with specified length, amplitude, sampling frequency.

Example: length=8, amplitude = 3, sampling frequency is 7 Hz.

- Random number generator
 - \(r_0, r_1, \ldots, r_7 \)
 - \(r_i \in [0,1] \)

\[3 \]

\[t \]

Step 2: Interpolate with smoothing.

Step 3: Repeat with various amplitudes/frequencies.

Step 4: Add together.

Creating Bumpy Surfaces

- Texture mapping
- Procedural texture mapping
- Bump mapping
- Transparency mapping
- Depth of field
- Lens effects
- Jittering
- Soft shadows

For more info see Perlin Noise link on proj2 web site.

Adrian Mettler, Spring 2003
bump mapping vs texture mapping

- bump mapping effects change with lighting changes
- texture mapping is computationally easier

displacement mapping

displacement map=height field

surface

bumpy
surface

q = p + f(p)n

bump mapping intuition

a surface appears to have a bump surface
- jagged silhouette
- surface normals fluctuate across surface

simulate this by perturbing normals in the lighting calculations

bump mapping

use regular surface but normal of bumpy surface

bumpy surface

q = p + f(p)n

we'll assume our bumpy surface is locally smooth so normals are well-defined

bump mapping

computing \(\mathbf{n}_q \):
1. find vectors \(\mathbf{v}_0 \) and \(\mathbf{v}_1 \) in plane tangent to bumpy surface at point \(q \)
2. \(\mathbf{n}_q = (\mathbf{v}_0 \times \mathbf{v}_1)/||\mathbf{v}_0 \times \mathbf{v}_1|| \)
find vectors in tangent plane

take partial derivatives of Q in two directions

what directions?

$Q + \Delta$

(0,0,0)

2d parameterization of original surface

$p(\phi, \theta)$

$p(\beta, \gamma)$

parameterization

$2d$ parameterization of surface

$u =$ direction of constant ϕ

$w =$ direction of constant γ

note: by direction we mean a unit vector
parameterization

\[u = (t_1-t_0)/(t_2-t_0) \] -- this is a little different than our parameterization for triangle intersection

\[p(\beta, \gamma) = t_0 + \beta (t_2-t_0) + \gamma (t_2-t_0) \]

\[\begin{align*}
 t_0 & \quad p(\beta, \gamma) & \quad t_2 \\
 \end{align*} \]

2d parameterization of surface

\[p(u, w) \]

\[(0,0,0) \]

find vectors in tangent plane

\[u = (t_1-t_0)/|t_2-t_0| \] -- this is a little different than our parameterization for triangle intersection

\[p(\beta, \gamma) = t_0 + \beta (t_1-t_0) + \gamma (t_2-t_0) \]

\[\begin{align*}
 t_0 & \quad p(\beta, \gamma) & \quad t_1 & \quad t_2 \\
 \end{align*} \]

\[u = (t_1-t_0)/|t_2-t_0| \] -- this is a little different than our parameterization for triangle intersection

\[p(\beta, \gamma) = t_0 + \beta (t_1-t_0) + \gamma (t_2-t_0) \]

\[\begin{align*}
 t_0 & \quad p(\beta, \gamma) & \quad t_1 & \quad t_2 \\
 \end{align*} \]

\[u = (t_1-t_0)/|t_2-t_0| \] -- this is a little different than our parameterization for triangle intersection

\[p(\beta, \gamma) = t_0 + \beta (t_1-t_0) + \gamma (t_2-t_0) \]

\[\begin{align*}
 t_0 & \quad p(\beta, \gamma) & \quad t_1 & \quad t_2 \\
 \end{align*} \]

We can compute \(P_u \) and \(P_w \) for our surfaces.
triangle: parametric form

\[P_u = \lim_{\delta \to 0} \left((t_0 + \beta \delta u + w) - (t_0 + \beta u + w) \right) / \| \delta u \| = \beta u \]

find vectors in tangent plane

\[
\begin{align*}
Q_u &= P_u + \left(\frac{df(u,w)}{du} n(u,w) + f(u,w) \frac{dn(u,w)}{du} \right) \\
Q_w &= P_w + \left(\frac{df(u,w)}{dw} n(u,w) + f(u,w) \frac{dn(u,w)}{dw} \right)
\end{align*}
\]

bump map derivative

convolution kernel

<table>
<thead>
<tr>
<th>-1</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

change in \(u \) | change in \(w \)

find vectors in tangent plane

\[
\begin{align*}
Q_u &= P_u + b_u(u,w) n(u,w) + f(u,w) \frac{dn(u,w)}{du} \\
Q_w &= P_w + b_w(u,w) n(u,w) + f(u,w) \frac{dn(u,w)}{dw}
\end{align*}
\]

we'll ignore this because:

(a) it is small,

(b) it is computationally difficult, and

(c) results look ok if we do.

we can do this!
bump mapping

1. Compute derivatives of surface P_u and P_v
2. Compute derivatives of bump map $b_u(u,v)$ and $b_v(u,v)$
3. Take cross products and add

Computation

1. Compute derivatives of surface P_u and P_v
2. Compute derivatives of bump map $b_u(u,v)$ and $b_v(u,v)$
3. Take cross products and add

cheap tricks

- texture mapping
- procedural texture mapping
- bump mapping
- transparency mapping
- depth of field
- lens effects
- jittering
- soft shadows

Texture specifies transparency of surface

2d parameterization of surface

take the cross product

take partial derivatives of $Q(u,v)=P(u,v)+f(u,v)n(u,v)$ with respect to u,v

$Q_u = P_u + b_u(u,v)n(u,v)$
$Q_v = P_v + b_v(u,v)n(u,v)$

take cross product

$Q_u \times Q_v = (P_u \times P_v) + b_u(u,v)P_u \times n(u,v) + b_v(u,v)P_v \times n(u,v)$

We'll assume our bumpy surface is locally smooth so normals are well-defined.
cheap tricks

- texture mapping
- procedural texture mapping
- bump mapping
- transparency mapping
- depth of field
- lens effects
- jittering
- soft shadows

jittering: anti-aliasing technique

- cast several rays through pixel neighborhood into scene
- for each:
 - find intersection point (if any) that is closest to eye
 - compute luminance at intersection
- compute average luminance

See paper mentioned in assignment

cheap tricks

- texture mapping
- procedural texture mapping
- bump mapping
- transparency mapping
- depth of field
- lens effects
- jittering
- soft shadows

jittering: antialiasing technique

Run rt for example
soft shadows

run rt for examples

soft shadows

use jittering in occlusion test

ray tracing

- simple ray casting
- recursive ray tracing
- modeling transforms
- cheap tricks
- optimizations