Review of Grammars

- We assume some familiarity with grammars from CS 60.
- The grammars studied were of a specialized type, known as “context-free” grammars.
- Here we will present a more general form of grammar, of which the context-free will be a special case.
Generality of Grammars

- For now, we will concentrate on string grammars, grammars for generating languages that are sets of strings.
- Other kinds of grammars can be used to generate graphs, trees, . . .
- There are other similar formal systems for generating languages that are not grammars. An example is “L systems”.

Definition of Grammars

- A grammar consists of 4 parts:
 - Terminal alphabet
 - Auxiliary alphabet
 - Productions
 - Start symbol S
Definition of Grammars

- A grammar consists of 4 parts:
 - Terminal alphabet S
 - Auxiliary alphabet A (such that $A \notin S = \emptyset$)
 - A finite set of productions \mathcal{A}
 - Start symbol $S \notin A$

- Each production has the form $x \rightarrow y$, where $x \in (S \rightarrow A)^+$, $y \in (S \rightarrow A)^*$.

- Note: The book calls auxiliaries “variables”. Elsewhere, they are also called “non-terminals”.

Derivation in a Grammar

- A derivation in of a grammar is a sequence of strings $x_0 \rightarrow x_1 \rightarrow x_2 \rightarrow \ldots$ each in $(S \rightarrow A)^*$ where:
 - $x_0 = S$, the start symbol
 - For each i, $x_i \rightarrow x_{i+1}$ provided that there are string u, v, $x_i = uvw$, $v \rightarrow v'$ such that
 - $x_i = uvw$
 - $x_{i+1} = uv'w$
 - $v \rightarrow v'$ is a production

- The **language generated by a grammar** is the set of strings $x \in (S \rightarrow A)^*$ such that there is a derivation that ends with x.
Example of a Grammar

- Productions:
 - $S \rightarrow ab$
 - $S \rightarrow aSb$
 - $S \rightarrow SS$

Example derivations of strings in the language:
- $S \rightarrow ab$
- $S \rightarrow aSb \rightarrow aabbb$
- $S \rightarrow SS \rightarrow abS \rightarrow abab$
- $S \rightarrow SS \rightarrow SSS \rightarrow ababab$
- $S \rightarrow SS \rightarrow aSbS \rightarrow aabbaSb \rightarrow aabbaabb$

Example:

Grammar for Additive Arithmetic Expressions
- The start symbol is A.
- The terminals are \{a, b, c, +\}.
- The productions are:
 - $A \rightarrow V$
 - $A \rightarrow V + A$
 - $V \rightarrow a$
 - $V \rightarrow b$
 - $V \rightarrow c$

Sample derivations:
1. $A \rightarrow V \rightarrow a$
2. $A \rightarrow V \rightarrow c$
3. $A \rightarrow V + A \rightarrow c + A \rightarrow c + V \rightarrow c + a$
4. $A \rightarrow V + A \rightarrow c + A \rightarrow c + V + A \rightarrow c + b + A \rightarrow c + b + V \rightarrow c + b + a$
Another Example of a Grammar for the Language \(\{ a^n b^n c^n \mid n \geq 0, n > 0 \} \)

- The grammar:
 - Terminal alphabet \(\Sigma = \{ a, b, c \} \)
 - Auxiliary alphabet \(\{ S, A, B, C, F \} \)
 - Productions:
 - \(S \rightarrow FE \)
 - \(E \rightarrow ABCE \)
 - \(E \rightarrow L \)
 - \(BA \rightarrow AB \)
 - \(CA \rightarrow AC \)
 - \(CB \rightarrow BC \)
 - \(FA \rightarrow a \)
 - \(aA \rightarrow aa \)
 - \(aB \rightarrow ab \)
 - \(bB \rightarrow bb \)
 - \(bC \rightarrow bc \)
 - \(cC \rightarrow cc \)
 - Start symbol \(S \)

- A derivation (underlines show symbols replaced):
 - \(S \rightarrow FE \rightarrow ABCE \rightarrow FABCABCE \rightarrow FABCABC \)
 - \(FABBCBC \rightarrow FAABCBC \rightarrow FAABBCC \rightarrow aABBCC \)
 - \(aaBBCC \rightarrow aabBCC \rightarrow aabBC \rightarrow aabbC \rightarrow aabbcc \)

Types of Grammars

- Grammars are classified by the kinds of productions they allow:
 - Type 0: no restriction
 - Type 1: length of LHS \(\leq \) length of RHS
 - Type 2: LHS is a single auxiliary only
 - Type 3: LHS is a single auxiliary, and RHS is either \(L \), or \(A \) where \(A \) is an auxiliary and \(\Sigma \).

- Note: Our definition differs from the book’s slightly. However, the basic ideas are the same.
Names for Types of Grammars

- Type 0: phrase-structure grammar
- Type 1: context-sensitive grammar
- Type 2: context-free grammar
- Type 3: right-linear grammar

Type 2 was the type of grammar studied in CS 60.

These types are called the “Chomsky Hierarchy”, after linguist Noam Chomsky, who first named them.

A language is regular iff it is generated by some type 3 grammar.

- Type 3 productions are of one of two types:
 - $B \rightarrow AC$, where $B \rightarrow A, \rightarrow C$
 - $B \rightarrow$
 - To prove this result, identify the states of a NFA with auxiliaries in the grammar. Assume a single start state and no \rightarrow-transitions (WLOG!).
 - $B \rightarrow AC$ is a production if state B goes to state C via symbol \rightarrow.
 - $B \rightarrow$ is a production iff B is an accepting state in the NFA.
 - The language generated by the grammar is the language generated by the NFA.
 - The only way to get rid of an auxiliary in the derived string is to use the production $B \rightarrow$, which corresponds to the NFA being in an accepting state.
Example: NFA vs. Grammar

NFA:

Grammar:
- Start symbol is S
- Productions:
 - $S \rightarrow 0S$
 - $S \rightarrow 0C$
 - $S \rightarrow 1B$
 - $B \rightarrow 1S$
 - $B \rightarrow 0C$
 - $B \rightarrow 1C$
 - $B \rightarrow L$

There are languages of type 2 that are **not regular**.
- $\{0^n1^n \mid n \in \mathbb{N}\}$ is known to be non-regular.
- The following type 2 grammar generates it:
 - $S \rightarrow 0S1$
 - $S \rightarrow \varepsilon$
Grammars vs. Regular Expressions

- Every regular expression corresponds to a **type 2** grammar in a natural way. (The connection to a type 3 grammar is through Kleene’s theorem.)

- Each sub-expression is identifiable with an auxiliary or a terminal symbol. The productions are:
 - $R \rightarrow ST$ if R is a product of sub-expressions S and T
 - $R \rightarrow S$ and $R \rightarrow T$ if R is a union of sub-expressions S and T
 - $R \rightarrow SR$ and $R \rightarrow L$ if R is S^*
 - $R \rightarrow \epsilon$ if R is \emptyset
 - $R \rightarrow \epsilon$ if R is $
 - none if R is \emptyset

Example

- Regular expression: $0((10)^* \ 01)^*$
 - $R \rightarrow ST$ \hspace{1cm} // $R = 0((10)^* \ 01)^* = ST$
 - $S \rightarrow 0$ \hspace{1cm} // $S = 0$
 - $T \rightarrow VT$ \hspace{1cm} // $T = ((10)^* \ 01)^* = V^*$
 - $T \rightarrow \epsilon$
 - $V \rightarrow W$ \hspace{1cm} // $V = (10)^* \ 01 = W \ 01$
 - $V \rightarrow X$
 - $W \rightarrow YW$ \hspace{1cm} // $W = (10)^* = Y^*$
 - $W \rightarrow \epsilon$
 - $Y \rightarrow 10$ \hspace{1cm} // $Y = 10$
 - $X \rightarrow 01$ \hspace{1cm} // $X = 01$

- Note the connection with solving language equations.
Closure Properties

- From the previous discussion, it can easily be seen that context free languages are closed under:
 - union
 - product (concatenation)
 - star operator
- Similarly, we can easily see that context free languages are closed under reversal, prefix, suffix, etc.
- We will eventually see that, unlike regular languages, they are *not* closed under intersection.

Closure Under Substitution (Homomorphism)

- Suppose that L is a language over Σ.
- By a **substitution map**, we mean a function that assigns to each element of a string from an alphabet Σ.
- Example: $\Sigma = \{0, 1\}$, $\Delta = \{a, b, c\}$, $s(0) = ab$, $s(1) = cbaba$.
- We can “extend” s to map any language over by simply applying s to the letters in each string in the language and concatenating the results for that string.
- Example: $L = \{1\}^*\{0\}$
 $s(L) = \{cbaba\}^*\{ab\}$
Both regular and context-free languages are closed under substitution mapping.

Grammar Shorthand

- Suppose that productions are:
 - $A \rightarrow V$
 - $A \rightarrow A + V$
 - $V \rightarrow a$
 - $V \rightarrow b$
 - $V \rightarrow c$

- Group by common left-hand sides
- Use $|$ (read "or") to represent alternatives:
 - $A \mid V \mid A + V$
 - $V \mid a \mid b \mid c$

- Note: $|$ "binds more loosely" than other symbols.
- Same grammar, just a briefer notation.
- $|$ is like union in regular expressions.
 - $A \mid V \mid A + V$ has a solution: $A = V (+ V)^*$
There are languages that are type 1 but not type 2.

- \{a^k b^k c^k \mid k \geq 0, k > 0\} can be shown to be type 1. However, there is no type 2 grammar that generates it.

- This is due to the **pumping lemma for context-free languages**.

- Before presenting this, we need to review **derivation trees**.

Derivation Tree Visualization

\[
\begin{align*}
A & \rightarrow V \mid V + A \\
V & \rightarrow a \mid b \mid c \\
\end{align*}
\]

- lines indicate that a production is being applied

- Terminal string = “fringe” of tree = “c + a + b”
Derivation Tree Advantage

- The derivation tree has the advantage over linear derivations using a single tree. Many different derivations can be shown using a single tree.
- These derivations are, in some sense, equivalent.

Exercise: List all derivations corresponding to the tree on the previous page.

Ambiguity

- Derivation trees are often used, e.g. in compilers, to assign meaning to generated strings.
- If a string has more than one derivation tree, it is called ambiguous.
- An ambiguous grammar is one that generates at least one ambiguous string.
Ambiguity

- Consider the grammar

 \[
 A \rightarrow V \mid A \ast A \mid A + A \\
 V \rightarrow a \mid b \mid c \\
 \]

- Show that this grammar is ambiguous.

Inherent Ambiguity

- For a given language, there may be both ambiguous and unambiguous grammars.

- A language that has no unambiguous grammar is called **inherently ambiguous**.

- An example, which we don’t prove here, of such a language is

 \{a^n b^m c^m d^n \mid n, m > 0\} \nabla \{a^n b^m c^m d^n \mid n, m > 0\}
Pumping Lemma for Context-Free Languages

- Let L be an infinite context-free language. Then there is a number n such that if $u \in L$ and $|u| > n$ then there are strings v, w, x, y, z, such that
 - $u = vwxyz$
 - $|wy| > 0$ (at least one of w or y is non-empty)
 - $|wxy| < n$
 - $(\exists m \geq 0) \; v^m w^m x^m y^m z \in L$

Proof that $\{a^k b^k c^k \mid k \in \mathbb{N}, k > 0\}$ is not context-free using the pumping lemma

- Suppose $\{a^k b^k c^k \mid k \in \mathbb{N}, k > 0\}$ were context-free. Let n be the integer that exists according to the pumping lemma. Consider $u = a^n b^n c^n$. Let $uvwxy = a^n b^n c^n$.

- One of v and x is not ε. Suppose it’s v. The other case is symmetric. By the PL, uv^2wx^2y is in L. Analyzing the cases for v as to whether it consists of all of one letter or of two letters, in all cases we get a contradiction.
Using Chomsky Normal Form for the proof of the pumping lemma

- The most direct proof requires a grammar in Chomsky Normal Form:
 - Every production, with one possible exception*, has one of these two forms:
 - $A \rightarrow BC$, where B and C are auxiliaries
 - $A \rightarrow s$, where $s \in S$
- For every context-free language not containing ε, is generated by some grammar in Chomsky Normal Form.
- Assume this for now, see book for proof.

Observation

- For a Chomsky Normal Form grammar, the derivation tree is **binary**: each auxiliary node has either:
 - two children, both of which are auxiliary
 - one child, which is terminal
Binary Tree Observation

- The **height** of a binary tree is defined as the number of nodes from the root to the longest path.
- A binary tree with height \(p+1 \) has at most \(2^p \) leaves.
- A binary tree with at least \(2^p \) leaves has height at least \(p+1 \).

Examples:

- Height 1, 1 leaf
- Height 2, 2 leaves
- Height 3, 4 leaves
- Height 4, 8 leaves

Proof of the Pumping Lemma (1)

- Suppose \(L \) is an infinite context-free language, and \(G \) is a Chomsky-Normal Form grammar for \(L \).
- **Let \(p \) be the number of auxiliary symbols in \(G \), exclusive of the start symbol if the exception is used.**
- We will show that the \(n \) that exists in the PL can be satisfied by \(n = 2^{p+1} \).

- Let \(u \in L \) be such that \(|u| > n\). Then the derivation tree for \(u \) has at least \(2^{p+1} \) leaves, so the height is at least \(p+2 \).

- Consider a maximum length path from leaf to root in this tree. This path has \(> p+1 \) auxiliary nodes, therefore some auxiliary must be repeated. Let \(A_1 \) be the first instance of a repeated auxiliary on the path and \(A_2 \) be the second. Such a repetition must take place in \(\leq p+1 \) nodes.
Proof of the Pumping Lemma (2)

- Here is a picture of our derivation tree:

Proof of the Pumping Lemma (3)

- Choose v, w, x, y, z as follows:

We see that $|wxy| < 2^p$. Also, $|wy| > 0$.

(A binary tree with height $p+1$ has at most 2^p leaves.)
Example

- $S \rightarrow AC$
- $S \rightarrow AB$
- $C \rightarrow SB$
- $A \rightarrow a$
- $B \rightarrow b$

Derrivation tree for $aaaabbbb$

Note: We can illustrate the principle even tho’ this string is not length or longer 16.

A Long Path
Repeated letters

\[u = aa \]
\[v = a \]
\[w = ab \]
\[x = b \]
\[y = bb \]
Conclusion drawn from pumping

\[u = aa \]
\[v = a \]
\[w = ab \]
\[x = b \]
\[y = bb \]

Conclusion: \(a^{ak}bb^{kb} \) is \(L \) for all \(k \).

Non-Closure Under Intersection

- The context-free languages are not closed under intersection.
- These can be shown to be context-free:
 - \(\{a^k b^k c^m \mid k, m \in \mathbb{N}\} \)
 - \(\{a^m b^k c^k \mid k, m \in \mathbb{N}\} \)
- However, their intersection is:
 - \(\{a^k b^k c^k \mid k \in \mathbb{N}\} \)
- which we know is not context free.
Closure Under Intersection with a Regular Language

- If \(L \) is context-free and \(R \) is regular, then \(L \cap R \) is context-free.

- An easy way to see this is to use a machine characterization of context-free languages, which we discuss next.