Propositional Deduction

Robert Keller
15 November 200

Logic
- In CS 60 we had an introduction to both proposition- and predicate-logic.
- These were covered from the viewpoint of meaning
 (known as “model theory” to logicians).
- There is another part of the story dealing with the
 structure of proofs (known as “proof theory”).
- We focus on the latter now, and will connect the two
 eventually.

Logic in CS 81
- We have two objectives in studying formal logic:
 - To firm up our concept of what forms a proof
 and how to create proofs.
 - To investigate the connection between computability and provability, such as:
 - The problem of giving an algorithm that will determine whether or not certain kinds of statements can be proved from certain axioms is unsolvable.

Formal Systems
- A system of logical proof is a variety of formal system, just as grammars and Turing machines are formal systems.
- A formal system tells how to construct things, using precise rules, usually as some form of induction.
- “Formal” means that adherence to the rules can be checked algorithmically.

Gottlob Frege (1848-1925)
- Created modern logic by introducing the predicate calculus.
- Developed a formalized definition of “proof”.
- Defined the natural numbers in anticipation of Peano’s axiomatization (1889)
- Did not anticipate Russell’s paradox.

Varieties of Logical Proof Systems
- Axiomatic or Hilbert/Ackermann:
 - Basis is a set of axioms
 - Rules of inference tell how to derive theorems from axioms (in zero or more steps).
 - Relatively few rules of inference
- Natural Deduction, or Gentzen:
 - No axioms
 - Rules of inference tell how to derive sequents, which can entail axioms as pre-conditions and theorems as post-conditions.
 - Relatively many rules of inference.
- The two are equivalent; it is a matter of style.
Hilbert/Ackerman and Gentzen

- David Hilbert (1862-1943)
- Wilhelm Ackermann (1896-1962)
 student of Hilbert (no photo available)
- Gerhard Gentzen (1909-1945)

Natural Deduction

- A natural deduction system derives sequents, expressions of the form:
 \[\alpha, \beta, \ldots, \gamma \]
- Each of the \(\gamma \) and \(\alpha \) represents a logical formula in an appropriate language (in the sense we have been using the term).
- The interpretation of the sequent is that each \(\gamma \) is a premise and \(\alpha \) is the conclusion.
- The \(\gamma \) could be axioms, then \(\alpha \) would be a theorem. However, the word "theorem" is usually reserved for the case that the set of premises is empty.

Truth vs. Derivation

- The intended interpretation of the sequent is that \(\alpha \) is a true formula provided that each of the \(\gamma \) are true.
- Whether or not this is really the case will depend on the rules.
- The definition of "truth" will be given later, but you can assume that it is like the one you know.
- Derivations themselves do not rely on notions of truth; they are totally mechanical.

Reference

- There are several approaches using sequents and different languages for formulas.
- We will be following the one in Huth & Ryan (HR).

A Typical Propositional Language

- E is the start symbol
- \(\text{E} \bot \text{A} \) // Atom
 \(\text{E} \bot \text{E} \) // Negation (not)
 \(\text{E} \bot \text{E} \) // Conjunction (and)
 \(\text{E} \bot \text{E} \) // Disjunction (or)
 \(\text{E} \bot \text{E} \) // Implication (implies)
 \(\text{E} \bot \) // Bottom
 \(T \) // Top
- \(\text{E} \bot 'p' \ bot 'q' \ bot 'r' \ bot 's' \ bot ... // Propositions

Bottom and Top?

- Think of bottom (\(\bot \)) as representing the constant "false".
- Think of top (\(T \)) as representing the constant "true".
Precedence

- The language as given fully parenthesizes everything.
- We will allow precedence in lieu of parentheses as an abbreviation. The binding order is negation, conjunction, disjunction, implication.

So

\[((p \land (q)) \land (r) \land (s \land q)) \]

could be abbreviated:

\[(p \land q) \land (r) \land (s \land q)) \]

Examples of Sequents

- \(p, (p \land q) \rightarrow q \)
- \((p \land q), (p \rightarrow q) \)
- \((p \land q), (p \land r), (r \land q) \)

The first, for example, is interpreted “If \(p \) is true and \((p \land q) \) is true, then \(q \) is true”.

More Notes on Sequents

- On the left-hand side of \(|\rightarrow \) in

\[\Box_1, \Box_2, \ldots, \Box_n |\rightarrow \]

the formulas are regarded as a set:

- order doesn’t matter
- repetition doesn’t matter

- Order and repetition does matter within a formula. Formulas are just strings.

Sequents and Intuition

- You might be thinking “Why bother with sequents; I can do all of this with my knowledge of tautologies, etc.”
- Your knowledge can be used as intuition for validating a sequent.
- However, sequents are supposed to express whether certain deductions are valid, as they might occur in a mathematical proof.
- Tautologies won’t be enough when we introduce predicates and quantifiers.
- In addition to using sequents, we intend to study the proof systems themselves (called meta-logic).

Sequent Meta-Logical Issues

- **Soundness:**
 - Determine whether a sequent derives only true formulas from true formulas.

- **Completeness:**
 - Determine whether every true formula can be derived from a fixed set of formulas (axioms).

Natural Deduction Rules

- Each rule represents an allowable step in deriving a sequent.
- The rules focus on deriving formulas by introducing or eliminating the various connectives:

 \[\rightarrow \]

- There is one rule for each case (introduction and elimination) for at least each connective, i.e. at least 8 rules. Some rules have multiple sub-rules.
Why “Natural” Deduction?

• “Natural” is a slogan intending to suggest that these rules are ones that might be used in normal proof construction and argumentation.

• Natural deduction also allows an argument to be developed by examining the desired conclusion and working toward assumed premises in a “natural” way.

[]-Introduction Rule ([[]])

• The reading of this rule is:
 - If [] and [] are any formulas that follow from the premises of a sequent, then the formula [] also follows from those premises.
 - The formulas above the line are called the antecedents and the one below the consequent.

Rule vs. Sequent

• Every rule immediately creates an infinite number of sequents. For example, the rule

 \[\lambda \lambda \frac{\lambda}{\lambda} \]

 creates sequents of the form

 \[\lambda, \lambda \frac{\lambda}{\lambda} \]

 for every pair of formulas [] and [].

 - The greek letters in the sequent form shown are not the formulas; they stand for arbitrary formulas.
 - Many sequents require multiple rule applications to establish.

Examples of Sequents Derived Using Only the ([[]]) Rule

• \(p, (q \triangleright r) \frac{\lambda}{\lambda} p[(q \triangleright r)] \) [One rule app.]

• \(p, (q \triangleright r) \frac{\lambda}{\lambda} (q \triangleright r)p \) [One rule app.]

• \(p, (q \triangleright r), s \frac{\lambda}{\lambda} ((q \triangleright r)[(p \triangleright s)]) \) [Two rule apps.]

Showing Sequent Derivations by Steps

• Derive \(p, (q \triangleright r), s \frac{\lambda}{\lambda} ((q \triangleright r)[(p \triangleright s)]) \):

 1. \(p \) Premise
 2. \((q \triangleright r) \) Premise
 3. \(s \) Premise
 4. \((p \triangleright s) \) Rule [[]] applied to formulas 1, 3
 5. \(((q \triangleright r)[(p \triangleright s)]) \) Rule [[]] applied to formulas 2, 4

 - The numbers on the right refer to the antecedents used in the rule to obtain the formula on the left, which is the consequent of a rule.

Showing Sequent Derivations by DAGs

• DAG = “Directed Acyclic Graph”

 - The premises are at the leaves of the DAG.

 \[
 p \frac{\lambda}{\lambda} s \frac{\lambda}{\lambda}
 \]

 \[
 (p \triangleright s) \frac{\lambda}{\lambda} (q \triangleright r) \frac{\lambda}{\lambda}
 \]

 \[
 ((q \triangleright r)[(p \triangleright s)]) \frac{\lambda}{\lambda}
 \]

 - Note that \((p \triangleright s) \) is used as the consequent of one rule application and the antecedent of another.
Steps vs. DAGs

- Steps correspond to the way that an argument might be presented in a math text or paper.
- DAGs allow for better visualization of what is used for what.
- Either representation can be constructed from the other.

A Step Derivation Using \(\land\) e and \(\lor\) i

- Derive \(p \land (q \lor r) : (p \land q) \lor r:\)
 1. \(p \land (q \lor r)\) Premise
 2. \(p \quad \land e_1 \quad \lor e_2 \quad 1\)
 3. \(q \lor r \quad \land e_1 \quad 1\)
 4. \(q \quad \lor e_2 \quad 3\)
 5. \(r \quad \lor e_1 \quad 3\)
 6. \(p \land q \quad \lor e_1 \quad 2, 4\)
 7. \((p \land q) \lor r \quad \lor e_2 \quad 6, 5\)

This shows that the DAG is not generally a "tree", as some antecedents are used multiple times.
Constructing Proofs by Working Backward

- If the conclusion is a premise, there is nothing to do.
- Otherwise, the outermost logical connective may suggest what rule could be used:
 - Derive \(p \land (q \lor r) \lor (p \land q) \lor r \)
 - The outermost connective in the conclusion is \(\lor \) therefore use \(\lor \) as the last step:
 - \((p \land q) \lor r \)
 - The use of \(\lor \) will require derivation of two new formulas:
 - \((p \land q) \lor r \)
 - Apply this approach recursively.

Choices

- Often the rule choice is not unique.
- Make a choice, but be prepared to backtrack (crossing off what you have done) and try a different one.

Constructing Proofs by Working Forward

- If a premise is the conclusion, there is nothing to do.
- Otherwise, synthesize a formula from existing formulas using available rules.
- Working forward might entail many choices of a formula to be synthesized, not all of which will be useable in deriving the conclusion.

Constructing Proofs by Working Both Directions Simultaneously

- Blend together working backward with working forward until the two "meet in the middle".
- Don’t overlook the DAG model as a means of arriving at proofs.
- Consider converting the DAG to steps for final clarity.

\(-\text{Introduction Rule (} i_1, i_2 \)\)

\[
\begin{array}{c}
\vdash i_1 \\
\hline
\vdash i_2 \\
\hline
\vdash (i_1, i_2)
\end{array}
\]

\(-\text{Elimination Rule, Modus Ponens}\)

\[
\begin{array}{c}
\vdash \vdash (i_1, i_2) \\
\hline
\vdash \vdash (i_1) \\
\hline
\vdash \vdash (i_2)
\end{array}
\]

- Its latin name \textit{modus ponens} (MP) is often used for this rule.
Example using \land -Elimination Rule

- Derive p, $(p \land q)$, $(q \land r) \Rightarrow r$
- p Premise
- $p \land q$ Premise
- $q \land r$ Premise
- $q \Rightarrow e$ e 1, 2
- $r \Rightarrow e$ e 4, 3

- With this example, you can start to see how deriving a sequent might actually be easier (and more "natural") than establishing a tautology.

Another form of \land -Elimination Rule, Modus Tollens

- A related macro or "derived rule" is modus tollens (MT):
 - $\land \Rightarrow e$ e 1, 2
 - $\Rightarrow e$ e 4, 3
 - "macro" means that this rule is a convenience and can be treated as an abbreviation for the application of other rules.
 - We will elaborate on this later.

Example using MT

- Derive $\Rightarrow r$, $(p \land q)$, $(q \land r) \Rightarrow \Rightarrow p$
- $\Rightarrow r$ Premise
- $p \land q$ Premise
- $q \land r$ Premise
- $q \Rightarrow MT$ 3, 1
- $p \Rightarrow MT$ 2, 4

\land -Elimination and Introduction Rules

- $\land \Rightarrow e$ e 1, 2
- $\Rightarrow e$ e 4, 3
- (This rule is "derived").

Rules with Sub-Derivations

- Certain rules have sub-derivations, rather than simply formulas, in their antecedents.
- A sub-derivation may incorporate assumptions that behave as premises but are not premises of the sequent being proved.
- These assumptions must be treated carefully to avoid confusion with regular premises.
- Accordingly, sub-derivations are shown inside a box.
- Assumptions introduced inside the box cannot be used as premises outside the box.
- However, sub-derivations may use formulas derived earlier outside the box.

\Rightarrow -Introduction Rule

- This is an example of a rule using a sub-derivation.

- Here to derive we use \Rightarrow as an assumption and get \Rightarrow as a conclusion using a sub-derivation.
- The sub-derivation is in a box because \Rightarrow is not useable outside.
Example Using Sub-Derivation

- Derive \((p \rightarrow q), (q \rightarrow r) \mid (p \rightarrow r)\)

1. \(p \rightarrow q\) \hspace{1cm} \text{Premise}
2. \(q \rightarrow r\) \hspace{1cm} \text{Premise}
3. \(p\) \hspace{1cm} \text{Assumption}
4. \(q\) \hspace{1cm} \text{\(\square\) e 1, 2}
5. \(r\) \hspace{1cm} \text{\(\square\) e 2, 4}
6. \(p \rightarrow r\) \hspace{1cm} \text{\(\square\) i 2-5}

Another Example Using Sub-Derivation

- Derive \((\square p \rightarrow q) \mid (\square q \rightarrow p)\)

1. \(\square p \rightarrow q\) \hspace{1cm} \text{Premise}
2. \(q\) \hspace{1cm} \text{Assumption}
3. \(\square q\) \hspace{1cm} \text{\(\square\) i 2}
4. \(\square p\) \hspace{1cm} \text{MT 1, 3}
5. \(p\) \hspace{1cm} \text{\(\square\) e 4}
6. \(q \rightarrow p\) \hspace{1cm} \text{\(\square\) i 2-5}

- Pattern matching:
 - \(\square\) \(\square\) \(\square\) \(\square\) \(\square\) \(\square\) \(\square\)
 - \(\square\) \(\square\) \(\square\) \(\square\) \(\square\) \(\square\) \(\square\)
 - \(\square\) \(\square\) \(\square\) \(\square\) \(\square\) \(\square\) \(\square\)
 - \(\square\) \(\square\) \(\square\) \(\square\) \(\square\) \(\square\) \(\square\)

A Sub-Derivation can be Trivial

- Derive \((\square p \rightarrow p)\) (Set of premises is empty):

1. \(p \rightarrow p\) \hspace{1cm} \text{Assumption}
2. \(p \rightarrow p\) \hspace{1cm} \text{\(\square\) i 1, 1}

- Pattern matching:
 - \(\square\)
 - \(\square\)
 - \(\square\)
 - \(\square\)
 - \(\square\)
 - \(\square\)

Both \(\square\) and \(\square\) are \(p\).

Sub-Derivations can be Nested

- Derive \((p \rightarrow q) \rightarrow p \rightarrow (q \rightarrow r)\)

1. \(p \rightarrow q\) \hspace{1cm} \text{Premise}
2. \(p\) \hspace{1cm} \text{Assumption}
3. \(q\) \hspace{1cm} \text{\(\square\) i 2, 3}
4. \(p \rightarrow q\) \hspace{1cm} \text{\(\square\) e 1, 4}
5. \(r\) \hspace{1cm} \text{\(\square\) i 1-3, 5}
6. \(q \rightarrow r\) \hspace{1cm} \text{\(\square\) i 2-6}
7. \(p \rightarrow (q \rightarrow r)\) \hspace{1cm} \text{\(\square\) i 2-6}

Sub-Derivations and DAGs

- It is unclear how to show sub-derivations in the DAG model.
- The customary way is to introduce the sub-derivation and discharge (cross-out) the assumptions so that they cannot be used outside the sub-derivation.
- The steps model is clearer in this regard, because nesting shows the order of discharge.

Sub-Derivations in the DAG model

- Derive \((p \rightarrow q) \rightarrow r \rightarrow p \rightarrow (q \rightarrow r)\)

<table>
<thead>
<tr>
<th>Assumption (/ denotes discharged)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\square) (\square) (\square) (\square) (\square) (\square) (\square)</td>
</tr>
<tr>
<td>(\square) (\square) (\square) (\square) (\square) (\square) (\square)</td>
</tr>
<tr>
<td>(\square) (\square) (\square) (\square) (\square) (\square) (\square)</td>
</tr>
<tr>
<td>(\square) (\square) (\square) (\square) (\square) (\square) (\square)</td>
</tr>
<tr>
<td>(\square) (\square) (\square) (\square) (\square) (\square) (\square)</td>
</tr>
<tr>
<td>(\square) (\square) (\square) (\square) (\square) (\square) (\square)</td>
</tr>
<tr>
<td>(\square) (\square) (\square) (\square) (\square) (\square) (\square)</td>
</tr>
</tbody>
</table>
-Elimination Rule

- This rule uses two sub-derivations:

- The interpretation is that if we want to "get rid of" a disjunction, we can derive a common formula from the two disjuncts.

Sub-Derivations vs. Sequents?

- Aren't the boxed sub-derivations essentially sequents themselves?
- If so, why don't we use the notation \[\frac{}{e} \] rather than

- The answer probably lies in the fact that sub-derivations can make use of formulas outside the box, and we'd have to repeat those formulas as premises of the sequent.

-Introduction Rule

- This rule introduces \[i \] through "contradiction":

-Elaboration Rule

- If we can derive \[i \] then we can derive anything. Consequently, the things we derive won't have much information value. So being able to derive \[i \] is undesirable, except in a sub-derivation.

Macro or Derived Rules

- Earlier MT was mentioned as a "macro" rule.
- The name "macro" alludes to programming language macros.
- While superficially similar to a subroutine, a macro is a text substitution done before a source is compiled or interpreted.
- In our case, it is a rule that could be replaced with a sequence of uses of other rules.
MT as a Macro derived from other rules

\[
\begin{array}{cc}
1. & \text{Premise} \\
2. & \text{Premise} \\
3. & \text{Assumption} \\
4. & \text{Premise} \\
5. & \text{Premise} \\
6. & \text{Assumption} \\
\end{array}
\]

• Every use of MT could thus be replaced with this sequence, which uses 3 rules: \(\neg, \wedge, \neg\).

\[
\begin{array}{c}
\text{\(\neg\neg\neg\neg\neg\neg\neg\)}
\end{array}
\]

Macro vs. Sequent

• Why isn’t a macro rule just another sequent?

RAA (Reductio ad absurdum) Rule

• This rule has a similarity to \(\neg\neg\):

\[
\begin{array}{c}
\text{\(\neg\neg\neg\neg\neg\neg\neg\)}
\end{array}
\]

RAA as a Macro derived from other rules

\[
\begin{array}{c}
\text{\(\neg\neg\neg\neg\neg\neg\neg\)}
\end{array}
\]

LEM (Law of the Excluded Middle)

• \(\neg\neg\) (No antecedent)

\[
\begin{array}{c}
\text{\(\neg\neg\neg\neg\neg\neg\neg\)}
\end{array}
\]
Summary of Non-Derived Rules

<table>
<thead>
<tr>
<th>Connective</th>
<th>Introduction</th>
<th>Elimination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>⊢ e₁, e₂</td>
</tr>
<tr>
<td></td>
<td>l₁, l₂</td>
<td>e</td>
</tr>
<tr>
<td></td>
<td>i₁, i₂</td>
<td>e</td>
</tr>
<tr>
<td></td>
<td>(none)</td>
<td>e</td>
</tr>
<tr>
<td></td>
<td>(derived)</td>
<td>⊢ e</td>
</tr>
</tbody>
</table>

Summary of Derived Rules So Far

- MT (Modus Tollens)
- RAA (Reductio ad Absurdum)
- LEM (Law of the Excluded Middle)
- ⊢ [n]

Validity vs. Provability

- $\mathcal{G}_1, ..., \mathcal{G}_n \vdash \mathcal{G}$ means \mathcal{G} is provable from $\mathcal{G}_1, ..., \mathcal{G}_n$.
- $\mathcal{G}_1, ..., \mathcal{G}_n \models \mathcal{G}$ means roughly the following:
 - If each of \mathcal{G}_1 is true, then \mathcal{G} is true.
- In other words, \mathcal{G} is a valid conclusion from $\mathcal{G}_1, ..., \mathcal{G}_n$.
- We need a definition of truth to make this precise.