What is Post’s Correspondence Problem (PCP)?

- Named after logician Emil Post* who, like Turing, studied fundamental models of computation, of a caliber comparable to Gödel, Turing, and Church (but “scooped” by them).

- *NOT* a problem that Post had with Zipcodes (as suggested by a Princeton student on his final exam).

- I don’t know if relation to Emily Post (1873–1960), also a philosopher.
Emil Post (center), 1897-1954

Definition of the PCP

• Devise an algorithm that will do the following:
 • Given two equal-length lists of bon-null strings over a common alphabet \(x = [x_1, x_2, \ldots, x_n] \) and \(y = [y_1, y_2, \ldots, y_n] \), determine whether there is a list of indices \([i_1, i_2, \ldots, i_m]\), possibly with repetition, such that the concatenations of the corresponding elements in each list are equal:
 \[x_{i_1} x_{i_2} \ldots x_{i_m} = y_{i_1} y_{i_2} \ldots y_{i_m} \]
 • A pair of lists is an instance of the problem, and when there is such a list of indices, the instance is said to have a solution.
Other Formulations

- Obviously we could present the input as a single **set** of pairs (or “dominoes”)

\[\{(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\} \]

rather than as two separate lists.

Example 1

- \(x = [100, 0, 1] \)
 \(y = [1, 100, 00]\)
- This instance has a solution: \([1, 3, 1, 3, 2, 2]\), since
 \[
 \begin{align*}
 100 & 1 100 100 & 1 0 0 \\
 = & 1 00 1 1 00 100 100
 \end{align*}
 \]
- As pairs, the problem would be stated: \(\{(100, 1), (0, 100), (1, 00)\}\).
Example 2

- \(x = [10, 011, 101] \)
 \(y = [101, 11, 011] \)
- As pairs, the problem would be stated: \((10, 101), (011, 11), (101, 011)\).
- This instance has no solution. A solution would obviously have to start with 1:

 \[
 \begin{array}{c}
 10 \\
 101 \\
 \end{array}
 \]
 then be followed by 3:

 \[
 \begin{array}{c}
 10 \\
 101 \\
 101 \\
 \end{array}
 \]
 then by another 3:

 \[
 \begin{array}{c}
 10 \\
 101 \\
 101 \\
 101 \\
 \end{array}
 \]
 and so on, but never closing.

Why is the PCP Important?

- The PCP is a problem that doesn’t require the notion of Turing machines in it’s statement.
- A child can understand instances of the problem (“dominoes”).
- The problem is seductive: looks solvable, superficially.
- The PCP will be shown unsolvable.
- Therefore the PCP is a clean, isolated unsolvable problem, that can be reduced to other problems to show them unsolvable.
Notes

• Individual instances can be shown solvable or unsolvable by ad hoc means.

• Solvability of individual instances is not the problem.

How to show unsolvable?

• Attempt to reduce a known unsolvable problem to PCP.

• Possible if we could get an instance to simulate a Turing machine:
 • The instance would have a solution iff the TM halts.
 • Would need an instance of PCP for every possible TM.
 • For example, TM halts \(\leq \text{PCP} \) has a solution.
Modified PCP (MPCP)

• The MPCP is a stepping stone that makes the reduction simpler.

• The MPCP is the same as the PCP, except that to be valid, a solution **must** begin with the first index.

• We will show:

\[\text{Halting} \leq \text{MPCP} \leq \text{PCP} \]

MPCP \leq PCP

• This means that for every instance M of MPCP there is an instance P of PCP such that M has a solution iff P does.

• Let M be an instance of MPCP. Select two new symbols not otherwise used in M, say # and $.

• For each pair \((x, y)\) of M define a pair \((x', y')\) of P:
 - Each symbol of \(x\) is followed by # to get \(x'\).
 - Each symbol of \(y\) is preceded by # to get \(y'\).

• There are two additional pairs in P:
 - A pair just like the first pair above, with \(x\) preceded by #.
 - A pair ($, #$).
Example 3

- M:
 \[x = [10111, 1, 10] \]
 \[y = [10, 111, 0] \]

- P:
 \[x' = [1#0#1#1#1#, 1#, 1#0#, 1#0#1#1#1#, $] \]
 \[y' = [#1#0, 1#1#1, 0, 0, #] \]

- A solution of M: [1, 2, 2, 3]
 \[10111 1 1 10 = 10 111 111 0 \]

- A solution of P: [4, 2, 2, 3, 5]
 \[#1#0#1#1#1# 1# 1# 1#0# $ \]
 \[= #1#0 1#1#1 1#1#1 $ \]

As constructed, P has a solution iff M does

- Proof:
 - Assume that P has a solution. By the form of the pairs in P, the solution must start and end with the last two pairs that were added in going from M to P. Start because there is only one pair in which both strings begin with # and end because there is only one in which both end with $.
 - But the start pair corresponds to the first pair of M.
 - Also, if there is a solution to P, then there is a corresponding to solution to M be removing the # and $ symbols.

 - Conversely, assume that M has a solution. Then there is a corresponding solution of P having as its first pair the first of the new pairs added, and as its last pair the second of the new pairs added, and all other pairs the same.
Halting \leq MPCP

- Let T be an arbitrary Turing machine.

- We will show how to construct an instance M of MPCP such that T halts iff M has a solution.

- Certain technical assumptions will be made to make the construction work.

- These will be indicated as needed.

- We will enumerate the pairs in M in groups.

Halting \leq MPCP Construction

- Suppose the initial state of the TM is q_0 and the initial tape is w. Then there will be a pair in M:
 $(\#, \#q_0w\#)$

- For each tape symbol X, there will be a pair in M:
 (X, X)

- There will be a pair in M:
 $(\#, \#)$
Halting \leq MPCP Construction

- For each transition $q, X \rightarrow p, Y, R$ there is a pair:
 (qX, Yp)
 and a pair:
 $(q\#, Yp\#)$

- For each transition $q, X \rightarrow p, Y, L$ and each tape symbol Z there is a pair:
 (ZqX, pZY)
 and a pair:
 $(Zq\#, pZY\#)$

- For the halting state h, and each tape symbol X and Y, there are pairs:
 (XhY, h)
 (Xh, h)
 (hY, h)

- Finally, there is the pair:
 $(h\#\#, \#)$

- We call the pairs on this page “Completion Pairs”.
Technical Assumptions (WLOG)

- Assume that the TM never writes a blank.
- Assume that it never moves left of its initial position (i.e. one-way infinite tape).

Operation

- As the TM goes through its transitions, the corresponding pairs of the MPCP build up a “partial solution”, meaning that one pair is always a prefix of the other. Each time a pair is added to the partial solution, it is of the form \((\text{Before}, \text{After})\) where \text{Before} is the tape and control configuration before, and \text{After} is the configuration after.

- In order to keep to a partial solution, the \text{Before} of the next pair must \textbf{match} the \text{After} of the previous pair. \#’s are used to keep the configurations separate.

- If and when the TM \textbf{halts}, the partial solution is extended to a complete solution by using the \textbf{Completion Rules}.
Further Details

• For further details of the proof and a worked example, please consult Martin pp 425-430.

Some Applications

• Undecidability of context-free language properties:
 • Do the languages of two context-free grammars intersect in a non-empty set?
 • Is the language of a context-free grammar ambiguous?

• Undecidability of certain theories in predicate logic (next part of course)