Primitive and Partial Recursive Functions

Robert M. Keller
Harvey Mudd College
10 November 2003

What is this?

• An alternate approach to defining the computable functions, one based on composition of numeric functions.

• Sometimes having this alternate viewpoint will be helpful.

• The family of primitive recursive functions is first defined, then partial recursive functions are built on that.
Primitive Recursive Functions

- The set of primitive recursive functions is given inductively.
- Every function is k-ary, for some $k \geq 0$.
- The domain and co-domain of each function is the set of natural numbers \{0, 1, 2, 3, ...\} or k-tuples thereof.

Basis Functions (1 of 3)

- The **zero** functions are all primitive recursive:

$$Z^k(x_1, x_2, \ldots x_k) = 0$$

for each arity $k \geq 0$.
Basis Functions (2 of 3)

- The **projection** functions are all primitive recursive:

\[P^k_j(x_1, x_2, \ldots, x_k) = x_j \]

for each arity \(k > 0 \) and each \(i, 1 < i < k \).

Basis Functions (3 of 3)

- The **successor** function is primitive recursive:

\[S(x) = x + 1 \]
Induction Rules (1 of 2)

- The **composition** of primitive recursive functions is primitive recursive:

 \[h(x_1, x_2, \ldots, x_k) = \]

 \[f(g_1(x_1, x_2, \ldots, x_k), \]

 \[g_2(x_1, x_2, \ldots, x_k), \]

 \[\ldots \]

 \[g_r(x_1, x_2, \ldots, x_k)) \]

 for each pair of arities \(k, r \geq 0 \).

Constant Functions

- A consequence of the rules up to this point is that **constant** functions are all primitive recursive:

 \[C^k_c(x_1, x_2, \ldots, x_k) = c \]

 for each natural number \(c \).

 This is so because is just a composition of the zero and successor functions:

 \[C^k_c(x_1, x_2, \ldots, x_k) = S(S(\ldots S(\text{zero}(x_1, x_2, \ldots, x_k)) \ldots)) \]
Explicit Definition (ED)

- This is a convenience in lieu of showing stacks of compositions, projections, and constants, we can just use definitions such as:

\[f(x, y, z) = g(h(y, x), 5, k(z, z)) \]

and know that if \(g, h, \) and \(k \) are primitive recursive, so is \(f \).

Induction Rules (2 of 2)

- A function defined from primitive recursive functions by the following \textbf{primitive recursion pattern} is primitive recursive:

\[
\begin{align*}
 h(0, x_1, x_2, \ldots x_k) &= g(x_1, x_2, \ldots x_k) \\
 h(n+1, x_1, x_2, \ldots x_k) &= f(x_1, x_2, \ldots x_k, n, h(n, x_1, x_2, \ldots x_k))
\end{align*}
\]

- Here \(h \) is being defined from \(g \) and \(h \), which are known to be primitive recursive.
Examples of Primitive Recursive Functions

- add(x, y): addition
- mult(x, y): multiplication
- pred(x): predecessor
- sub(x, y): proper subtraction
- mod(x, y): modulus
- div(x, y): integer division (quotient)
- sqrt(x): integer square root

rex implementations

- I will demonstrate some of these using rex rules. This allows the definitions to be tested readily.

- rex does not enforce the primitive recursive formalism, so we have to be careful not to “cheat”.
add implementation

- \(S(n) = n + 1; \) // pretend this is built in
- \(\text{add}(0, y) \rightarrow y; \)
- \(\text{add}(n+1, y) \rightarrow S(\text{add}(n, y)); \)
- For reference
 \[
 h(0, x_1, x_2, \ldots x_k) = g(x_1, x_2, \ldots x_k)

 h(n+1, x_1, x_2, \ldots x_k) =

 f(x_1, x_2, \ldots x_k, n, h(n, x_1, x_2, \ldots x_k))
 \]

mult implementation

- \(\text{mult}(0, y) \rightarrow 0; \)
- \(\text{mult}(n+1, y) \rightarrow \text{add}(y, \text{mult}(n, y)); \)
- For reference
 \[
 h(0, x_1, x_2, \ldots x_k) = g(x_1, x_2, \ldots x_k)

 h(n+1, x_1, x_2, \ldots x_k) =

 f(x_1, x_2, \ldots x_k, n, h(n, x_1, x_2, \ldots x_k))
 \]
pred implementation

- pred(0, y) =>
- pred(n+1, y) =>
- For reference
 \[h(0, x_1, x_2, \ldots, x_k) = g(x_1, x_2, \ldots, x_k) \]
 \[h(n+1, x_1, x_2, \ldots, x_k) = f(x_1, x_2, \ldots, x_k, n, h(n, x_1, x_2, \ldots, x_k)) \]

sub implementation

- sub is **proper** subtraction (aka “monus”):
 If \(a < b \), then \(\text{sub}(a, b) = 0 \).
- sub(y, 0) =>
- sub(y, n+1) =>
- For reference
 \[h(0, x_1, x_2, \ldots, x_k) = g(x_1, x_2, \ldots, x_k) \]
 \[h(n+1, x_1, x_2, \ldots, x_k) = f(x_1, x_2, \ldots, x_k, n, h(n, x_1, x_2, \ldots, x_k)) \]
Primitive Recursive Predicates

- For some definitions we want to have predicates, which we can equate to functions return only values 0 (false) and 1 true.

- $\text{sgn}(0) \Rightarrow 0$;
- $\text{sgn}(n+1) \Rightarrow 1$;
- sgn converts arbitrary values to \{0, 1\}.

Negation

- $\text{not}(0) \Rightarrow 1$;
- $\text{not}(n+1) \Rightarrow 0$;
Equality Predicate

• eq(x, y) = not(add(sub(x, y), sub(y, x)));

if-then-else function

• ifthenelse(0, x, y) => y;
• ifthenelse(n+1, x, y) => x;

• This can be inefficient if all arguments must be computed to get a result (applicative order). It should be taken as an “academic” version, perhaps.
mod and div

- $\text{mod}(0, \ y) => 0$;
- $\text{mod}(n+1, \ y) => \text{ifthenelse}(\text{eq}(\text{S}($ $\text{mod}(n, \ y)$$), \ y)$$, \ 0$$, \ \text{S}($ $\text{mod}(n, \ y)$$));$
- $\text{div}(0, \ y) => 0$;
- $\text{div}(n+1, \ y) => \text{ifthenelse}(\text{eq}(\text{S}($ $\text{mod}(n, \ y)$$), \ y)$$, \ \text{S}($ $\text{div}(n, \ y)$$), \ \text{div}(n, \ y)$$);$ \\

Perspective

- Primitive recursive functions are functions that can be defined using only \textbf{definite iteration} (e.g. \text{for-loop} with upper bound pre-determined) and not requiring indefinite iteration (\text{while-loops}) or the full power of recursion.
- Primitive recursion as given is not a special case of tail recursion, although there is an equivalent version that is.
Primitive Recursion = Definite Iteration

- The function h defined in the primitive recursion scheme can be computed by the following for-loop:

  ```
  acc = g(x_1, x_2, \ldots x_k);
  for( j = 0; j < n; j++ )
    acc = f(x_1, x_2, \ldots x_k, j, acc);
  // acc == h(n, x_1, x_2, \ldots x_k)
  ```

Tail-Recursive Version

- The function $h(n, x_1, x_2, \ldots x_k)$ can be computed as $t(n, g(x_1, x_2, \ldots x_k))$ where t is defined in the following tail-recursion:

  ```
  t(0, acc) = acc;
  t(n+1, acc) = f(x_1, x_2, \ldots x_k, n, acc);
  ```
Example: Factorial

- Primitive-recursive version (uses the primitive-recursion pattern):

 \[\text{fac}(0) = 1 \]
 \[\text{fac}(n+1) = \text{mult}(n+1, \text{fac}(n)) \]

- Tail-recursive version (doesn't use the pattern, but equivalent):

 \[\text{fac}_{\text{tr}}(n) = t(n, 1) \]

 \[t(0, \text{acc}) = \text{acc} \]
 \[t(n+1, \text{acc}) = t(n, \text{mult}(n+1, \text{acc})) \]

Tail-Recursion Theorem

- If \(h \) is defined from \(f \) and \(g \) using primitive recursion, then \(h \) can also be defined from \(f \) and \(g \) using tail recursion.
- The conversion is given on preceding slides.
- Claim: (\(\forall n \)) \(t(n, \text{acc}) = h(n, x_1, x_2, \ldots, x_k) \) provided \(\text{acc} \) is initialized with \(g(x_1, x_2, \ldots, x_k) \).
- Proof is by induction on \(n \).

 Show that both

 \[t(n, \text{acc}) = f(X, n-1, f(X, n-2, \ldots, f(X, 0, g(X))\ldots)) \]
 \[h(n, X) = f(X, n-1, f(X, n-2, \ldots, f(X, 0, g(X))\ldots)) \]
Totality Theorem

• Every primitive recursive function is total.

• Two levels of induction are involved:
 • For each use of the primitive-recursion pattern, there is an induction to show that \(h \) is defined for all \(n \), assuming that \(f \) and \(g \) are total.
 • There is induction on the number of uses of the induction rules in defining the top level function.

Computability Theorem

• Every primitive-recursive function is computable by a Turing machine.

• This is more-or-less obvious, but it can be shown in significant detail by showing how a Turing machine can be constructed by composing functions using the basis functions and induction rules.

• Please consult the text for details.
Diagonalization Theorem

- There is a total recursive function that is not primitive recursive.
- Proof: Using the computability theorem, we know that we can enumerate the primitive recursive functions of one argument:
 \[p_0, p_1, p_2, \ldots \]
 They are just a subsequence of the ones computed by Turing machines in the ordering of all Turing machines.
 Then define \(q(x) = p_x(x) + 1 \). This function is clearly total, since each \(p_x \) is, but \(q \) cannot appear in the list.

The Ackermann Hierarchy

- We notice that add and mult have similar definitions.
 - add uses S as a base
 - mult uses add as a base
- We can go on to define exp analogously, using mult as a base.
- When does this stop?
- We quickly reach functions that have very large values for small arguments.
- It is possible to diagonalize over this hierarchy.
The Ackermann Hierarchy

- \(A_0(m) = S(m) \)
- \(A_{n+1}(0) = A_n(1) \)
- \(A_{n+1}(m+1) = A_n(A_{n+1}(m)) \)

- Each function in the list: \(A_0, A_1, A_2, \ldots \) is clearly primitive-recursive.
- Define \(A(n, m) = A_n(m) \).
- It can be proved that \(A \) grows faster than any single primitive-recursive function, hence is not primitive-recursive itself.

Recursive Functions

- This is a family of partial functions, also known as "the partial recursive functions".
- We have used that term to describe the partial computable functions, and the definitions turn out to be equivalent.
\[\text{-Recursive Functions}\]

- Start with the primitive-recursive functions as a base.
- Add one more induction rule: If \(f \) is a \(k+1 \) ary \([-\)-recursive function, \(h \) is a \(k+1 \) ary one:

\[
h(x_1, x_2, \ldots x_{k-1}) = \\
\exists x_k [f(x_1, x_2, \ldots x_k) = 0]
\]

read "the least value of \(x_k \) such that \(f(x_1, x_2, \ldots x_k) = 0 \)."

\[\text{-Recursive Functions}\]

- The definition of a function using the operator really only makes sense if the function \(f \) is **total**.

- Totality cannot be established syntactically (why?).

- We will adopt the convention that the values of for which \(f \) is computed are given sequentially, and that if \(f(x_1, x_2, \ldots x_k) \) is divergent for any value before reaching a value \(x_k \) such that \(f(x_1, x_2, \ldots x_k) = 0 \), then \(h(x_1, x_2, \ldots, x_{k-1}) \) also diverges for the given arguments.
Computability Theorem for μ-Recursive Functions

• We can extend to the partial recursive functions the proof that the primitive recursive functions are Turing computable.
• Consult the text for details.

Converse of the Computability Theorem

• Every Turing computable partial function is computable by a μ-recursive partial function.

• Moreover, the μ operator needs to be used only once to achieve any partial-recursive function.
Importance of the Computability Theorem and its Converse

- Turing-computable partial functions and \(\mu \)-recursive partial functions are established as being the same thing.

- One was defined using *strings*, the other using *numbers*.

Establishing the Converse

- The converse shows that any Turing-computable partial function is a \(\mu \)-recursive partial function.

- To do this involves *encoding* TM tapes and configurations as numbers.

- Then it can be shown that there are primitive recursive functions that:
 - Simulate a single step of a Turing machine.
 - Tell whether an encoded configuration is halting.
Primitive Recursive TM equivalents

- $R(x)$ is the configuration resulting after 1 step from x.

- $T(i, x)$ is the configuration resulting from configuration x after i steps.

- $P(x)$ indicates whether or not a configuration is halting (0 or 1).

Recursive TM equivalents

- Halting in i steps is expressed by:

 $\exists i \: [P(T(i, x_0)) = 0]$

- The halting configuration is:

 $T(\exists i \: [P(T(i, x_0)) = 0], x_0)$
Encodings

- Using **primitive** recursive functions to encode and decode tapes and configurations requires a lengthy, but interesting, excursion.

- One way (but not the only way) to encode arbitrary sequences of numbers is to use “Gödel numbering”:

 Any sequence of natural numbers

 \((x_1, x_2, \ldots, x_k)\)

 can be encoded as a **single** natural number:

 \[p_1^{x_1} p_2^{x_2} \cdots p_k^{x_k} \]

Universal \(\mu\)-Recursive Functions

- Most results for Turing machines have parallels for the \(\mu\)-Recursive Functions

- The \(\mu\)-recursive functions are programs that can be coded and enumerated just like Turing machines can:

\[\mu^k_0, \mu^k_1, \mu^k_2, \mu^k_3, \ldots \]

are the \(k\)-ary \(\mu\)-recursive functions for any fixed \(k\).
Kleene’s Normal Form Theorem

- For each $k \geq 1$, there exists a 1-ary primitive recursive function U and a $(k+2)$-ary primitive recursive predicate T_k such that

 - $[\forall x_1, x_2, \ldots, x_k] (\exists z) T(n, x_1, x_2, \ldots, x_k, z)$
 - $[\forall y(x_1, x_2, \ldots, x_k) = U([\exists z [T(n, x_1, x_2, \ldots, x_k, z) = 0]])$

- Essentially, T is like the function that tells whether the nth configuration of a TM computation is halting, while U gives the result from that halting configuration.

- The numbers z code both the program and the number of steps.

Universal \square-Recursive Functions

- For each k, there is a \square-recursive function \square of $k+1$ variables such that

 $\square(n, x_1, x_2, \ldots, x_k) =

 \square^k_n(x_1, x_2, \ldots, x_k)$

- \square is a universal function for k arguments.
Recursive and R.E. Sets

- Languages are now sets of numbers.
- A set is recursive if its characteristic function is total recursive.
- A set is recursively-enumerable if there is a total recursive function that enumerates it.
- Equivalently, a set is recursively-enumerable if it is the domain of some partial recursive function.

Halting and Divergence

- Bo is used to mean that has a value for argument x.
- B is used to mean that diverges on argument x.
- The set \{j | j(j)\} is not recursively-enumerable: this is the halting problem.
- The set \{j | j(j)\} is recursively-enumerable, but not recursive.
- The set \{j | j(0)\} is not R.E. either, analogous to the blank-tape halting problem.
Problem: Exhibit a total function that is not computable.

- Define

\[f(j) = \begin{cases} \lceil j \rceil(j) + 1 & \text{if } \lceil j \rceil(j) \\ 0 & \text{otherwise} \end{cases} \]

\(f \) is evidently total. \(f \) is not computable, since if it were, say \(\lceil k \rceil \), then \(f(k) \) would give a contradiction.

Hilbert’s Tenth Problem

- This is an unsolvable problem of practical interest.
 - Give an algorithm that will determine whether a multi-variate polynomial equation has an integer solution.

- Example of an equation:
 \[x^2 + 3y^3 + 13 = 0 \]

- The problem of whether this is possible was posed by Hilbert in 1900.

- This problem was not proved unsolvable until 1970, when it was established that every recursively-enumerable set of k-tuples is the set of solutions of some such equation.