What is this?

- An alternate approach to defining the computable functions, one based on composition of numeric functions.
- Sometimes having this alternate viewpoint will be helpful.
- The family of primitive recursive functions is first defined, then partial recursive functions are built on that.

Primitive Recursive Functions

- The set of primitive recursive functions is given inductively.
- Every function is k-ary, for some $k \geq 0$.
- The domain and co-domain of each function is the set of natural numbers $\{0, 1, 2, 3, \ldots\}$ or k-tuples thereof.

Basis Functions (1 of 3)

- The zero functions are all primitive recursive:
 $$Z^k(x_1, x_2, \ldots x_k) = 0$$
 for each arity $k \geq 0$.

Basis Functions (2 of 3)

- The projection functions are all primitive recursive:
 $$P^k_j(x_1, x_2, \ldots x_k) = x_j$$
 for each arity $k \geq 0$ and each i, $1 \leq i \leq k$.

Basis Functions (3 of 3)

- The successor function is primitive recursive:
 $$S(x) = x + 1$$
Induction Rules (1 of 2)
- The composition of primitive recursive functions is primitive recursive:
 \[h(x_1, x_2, \ldots, x_k) = \]
 \[f(g_1(x_1, x_2, \ldots, x_k), \]
 \[g_2(x_1, x_2, \ldots, x_k), \]
 \[\ldots \]
 \[g_r(x_1, x_2, \ldots, x_k)) \]
 for each pair of arities \(k, r \geq 0 \).

Constant Functions
- A consequence of the rules up to this point is that constant functions are all primitive recursive:
 \[C^k_{\text{const}}(x_1, x_2, \ldots, x_k) = c \]
 for each natural number \(c \).
 This is so because is just a composition of the zero and successor functions:
 \[C^k_{\text{const}}(x_1, x_2, \ldots, x_k) = S(S(\ldots S(\text{zero}(x_1, x_2, \ldots, x_k)) \ldots)) \]

Explicit Definition (ED)
- This is a convenience in lieu of showing stacks of compositions, projections, and constants, we can just use definitions such as:
 \[f(x, y, z) = g(h(y, x), 5, k(z, z)) \]
 and know that if \(g, h, \) and \(k \) are primitive recursive, so is \(f \).

Induction Rules (2 of 2)
- A function defined from primitive recursive functions by the following primitive recursion pattern is primitive recursive:
 \[h(0, x_1, x_2, \ldots, x_k) = g(x_1, x_2, \ldots, x_k) \]
 \[h(n+1, x_1, x_2, \ldots, x_k) = \]
 \[f(x_1, x_2, \ldots, x_k, n, h(n, x_1, x_2, \ldots, x_k)) \]
 Here \(h \) is being defined from \(g \) and \(h \), which are known to be primitive recursive.

Examples of Primitive Recursive Functions
- add(x, y): addition
- mult(x, y): multiplication
- pred(x): predecessor
- sub(x, y): proper subtraction
- mod(x, y): modulus
- div(x, y): integer division
- (quotient)
- sqrt(x): integer square root

rex implementations
- I will demonstrate some of these using rex rules. This allows the definitions to be tested readily.
- rex does not enforce the primitive recursive formalism, so we have to be careful not to "cheat".
add implementation
- \(S(n) = n + 1; \) // pretend this is built in
- add(0, y) => y;
- add(n+1, y) => S(add(n, y));
- For reference
 \[h(0, x_1, x_2, \ldots x_k) = g(x_1, x_2, \ldots x_k) \]
 \[h(n+1, x_1, x_2, \ldots x_k) = \]
 \[f(x_1, x_2, \ldots x_k, n, h(n, x_1, x_2, \ldots x_k)) \]

mult implementation
- mult(0, y) => 0;
- mult(n+1, y) => add(y, mult(n, y));
- For reference
 \[h(0, x_1, x_2, \ldots x_k) = g(x_1, x_2, \ldots x_k) \]
 \[h(n+1, x_1, x_2, \ldots x_k) = \]
 \[f(x_1, x_2, \ldots x_k, n, h(n, x_1, x_2, \ldots x_k)) \]

pred implementation
- pred(0, y) =>
- pred(n+1, y) =>
 - For reference
 \[h(0, x_1, x_2, \ldots x_k) = g(x_1, x_2, \ldots x_k) \]
 \[h(n+1, x_1, x_2, \ldots x_k) = \]
 \[f(x_1, x_2, \ldots x_k, n, h(n, x_1, x_2, \ldots x_k)) \]

sub implementation
- sub is proper subtraction (aka "monus"): If \(a < b \), then \(\text{sub}(a, b) = 0 \).
- sub(y, 0) =>
- sub(y, n+1) =>
 - For reference
 \[h(0, x_1, x_2, \ldots x_k) = g(x_1, x_2, \ldots x_k) \]
 \[h(n+1, x_1, x_2, \ldots x_k) = \]
 \[f(x_1, x_2, \ldots x_k, n, h(n, x_1, x_2, \ldots x_k)) \]

Primitive Recursive Predicates
- For some definitions we want to have predicates, which we can equate to functions return only values 0 (false) and 1 true.
- sgn(0) => 0;
- sgn(n+1) => 1;
- sgn converts arbitrary values to \(\{0, 1\} \).

Negation
- not(0) => 1;
- not(n+1) => 0;
Equality Predicate

- \(\text{eq}(x, y) = \neg(\text{add}(\text{sub}(x, y), \text{sub}(y, x))) \);

if-then-else function

- \(\text{ifthenelse}(0, x, y) => y; \)
- \(\text{ifthenelse}(n+1, x, y) => x; \)

- This can be inefficient if all arguments must be computed to get a result (applicative order). It should be taken as an "academic" version, perhaps.

mod and div

- \(\text{mod}(0, y) => 0; \)
- \(\text{mod}(n+1, y) => \text{ifthenelse}(\text{eq}(S(\text{mod}(n, y)), y), 0, S(\text{mod}(n, y)))); \)
- \(\text{div}(0, y) => 0; \)
- \(\text{div}(n+1, y) => \text{ifthenelse}(\text{eq}(S(\text{mod}(n, y)), y), S(\text{div}(n, y)), \text{div}(n, y))); \)

Perspective

- Primitive recursive functions are functions that can be defined using only definite iteration (e.g. for-loop with upper bound pre-determined) and not requiring indefinite iteration (while-loops) or the full power of recursion.
- Primitive recursion as given is not a special case of tail recursion, although there is an equivalent version that is.

Primitive Recursion = Definite Iteration

- The function \(h \) defined in the primitive recursion scheme can be computed by the following for-loop:

 \[
 \begin{align*}
 \text{acc} & = g(x_1, x_2, \ldots x_k); \\
 \text{for} (j = 0; j < n; j++) & \\
 \text{acc} & = f(x_1, x_2, \ldots x_k, j, \text{acc}); \\
 // \text{acc} & = h(n, x_1, x_2, \ldots x_k)
 \end{align*}
 \]

Tail-Recursive Version

- The function \(h(n, x_1, x_2, \ldots x_k) \) can be computed as \(t(n, g(x_1, x_2, \ldots x_k)) \) where \(t \) is defined in the following tail-recursion:

 \[
 \begin{align*}
 t(0, \text{acc}) & = \text{acc}; \\
 t(n+1, \text{acc}) & = f(x_1, x_2, \ldots x_k, n, \text{acc});
 \end{align*}
 \]
Example: Factorial

- Primitive-recursive version (uses the primitive-recursion pattern):

 \[
 \text{fac}(0) = 1 \\
 \text{fac}(n+1) = \text{mult}(n+1, \text{fac}(n))
 \]

- Tail-recursive version (doesn’t use the pattern, but equivalent):

 \[
 \begin{align*}
 \text{fac}_t(n) &= t(n, 1) \\
 t(0, \text{acc}) &= \text{acc} \\
 t(n+1, \text{acc}) &= t(n, \text{mult}(n+1, \text{acc}))
 \end{align*}
 \]

Tail-Recursion Theorem

- If h is defined from f and g using primitive recursion, then h can also be defined from f and g using tail recursion.
- The conversion is given on preceding slides.
- Claim: \(((\forall n) t(n, \text{acc}) = h(n, x_1, x_2, \ldots x_k)\text{ provided acc is initialized with } g(x_1, x_2, \ldots x_k))\).
- Proof is by induction on n.

 Show that both
 \[
 \begin{align*}
 t(n, \text{acc}) &= f(X, n-1, f(X, n-2, \ldots f(X, 0, g(X)) \ldots)) \\
 h(n, X) &= f(X, n-1, f(X, n-2, \ldots f(X, 0, g(X)) \ldots))
 \end{align*}
 \]

Totality Theorem

- Every primitive recursive function is total.
- Two levels of induction are involved:

 - For each use of the primitive-recursion pattern, there is an induction to show that h is defined for all n, assuming that f and g are total.
 - There is induction on the number of uses of the induction rules in defining the top level function.

Computability Theorem

- Every primitive-recursive function is computable by a Turing machine.

 - This is more-or-less obvious, but it can be shown in significant detail by showing how a Turing machine can be constructed by composing functions using the basis functions and induction rules.

 - Please consult the text for details.

Diagonalization Theorem

- There is a total recursive function that is not primitive recursive.
- Proof: Using the computability theorem, we know that we can enumerate the primitive recursive functions of one argument:

 \[
 p_0, p_1, p_2, \ldots
 \]

 They are just a subsequence of the ones computed by Turing machines in the ordering of all Turing machines.

 Then define \(q(x) = p_x(x) + 1 \). This function is clearly total, since each \(p_x \) is, but \(q \) cannot appear in the list.

The Ackermann Hierarchy

- We notice that add and mult have similar definitions.

 - add uses \(S \) as a base
 - mult uses add as a base
 - We can go on to define \(\text{exp} \) analogously, using mult as a base.
 - When does this stop?
 - We quickly reach functions that have very large values for small arguments.
 - It is possible to diagonalize over this hierarchy.
The Ackermann Hierarchy

- \(A_0(m) = S(m) \)
- \(A_{n+1}(0) = A_n(1) \)
- \(A_{n+1}(m+1) = A_n(A_{n+1}(m)) \)

Each function in the list: \(A_0, A_1, A_2, \ldots \) is clearly primitive-recursive.
- Define \(A(n, m) = A_n(m) \).
- It can be proved that \(A \) grows faster than any single primitive-recursive function, hence is not primitive-recursive itself.

Recursive Functions

- This is a family of partial functions, also known as "the partial recursive functions".
- We have used that term to describe the partial computable functions, and the definitions turn out to be equivalent.

\(\square \)-Recursive Functions

- Start with the primitive-recursive functions as a base.
- Add one more induction rule: If \(f \) is a \(k+1 \) ary \(\square \)-recursive function, \(h \) is a \(a \) \(k+1 \) ary one:
 \[
 h(x_1, x_2, \ldots, x_k) = \begin{cases}
 x_k & \text{if} \ f(x_1, x_2, \ldots, x_k) = 0 \\
 \square & \text{else}
 \end{cases}
 \]
 read "the least value of \(x_k \) such that \(f(x_1, x_2, \ldots, x_k) = 0 \)."

Converse of the Computability Theorem

- Every Turing computable partial function is computable by a \(\square \)-recursive partial function.
- Moreover, the \(\square \) operator needs to be used only once to achieve any partial-recursive function.
Importance of the Computability Theorem and its Converse

- Turing-computable partial functions and \(\mu \)-recursive partial functions are established as being the same thing.
- One was defined using **strings**, the other using **numbers**.

Establishing the Converse

- The converse shows that any Turing-computable partial function is a \(\mu \)-recursive partial function.
- To do this involves encoding TM tapes and configurations as numbers.
- Then it can be shown that there are primitive recursive functions that:
 - Simulate a single step of a Turing machine.
 - Tell whether an encoded configuration is halting.

Primitive Recursive TM equivalents

- \(R(x) \) is the configuration resulting after 1 step from \(x \).
- \(T(i, x) \) is the configuration resulting from configuration \(x \) after \(i \) steps.
- \(P(x) \) indicates whether or not a configuration is halting (0 or 1).

Recursive TM equivalents

- Halting in \(i \) steps is expressed by:
 \[\exists [P(T(i, x_0)) = 0] \]
- The halting configuration is:
 \[T(\exists [P(T(i, x_0)) = 0], x_0) \]

Encodings

- Using **primitive** recursive functions to encode and decode tapes and configurations requires a lengthy, but interesting, excursion.
- One way (but not the only way) to encode arbitrary sequences of numbers is to use "Gödel numbering": Any sequence of natural numbers \((x_1, x_2, \ldots, x_k) \) can be encoded as a **single** natural number:
 \[p_1^{x_1} p_2^{x_2} \cdots p_k^{x_k} \]

Universal \(\mu \)-Recursive Functions

- Most results for Turing machines have parallels for the \(\mu \)-Recursive Functions
- The \(\mu \)-recursive functions are programs that can be coded and enumerated just like Turing machines can:
 \[\mu_0, \mu_1, \mu_2, \mu_3, \ldots \]
 are the k-ary \(\mu \)-recursive functions for any fixed \(k \).
Kleene’s Normal Form Theorem

- For each \(k \geq 1 \), there exists a 1-ary primitive recursive function \(U \) and a \((k+2)\)-ary primitive recursive predicate \(T_k \) such that
 \[
 \begin{cases}
 j \uparrow(n, x_1, x_2, \ldots, x_k) = 1 & \text{iff } T(n, x_1, x_2, \ldots, x_k) = 0
 \\
 0 & \text{otherwise}
 \end{cases}
 \]
- Essentially, \(T \) is like the function that tells whether the \(n \)th configuration of a TM computation is halting, while \(U \) gives the result from that halting configuration.
- The numbers \(z \) code both the program and the number of steps.

Universal \(\square \)-Recursive Functions

- For each \(k \), there is a \(\square \)-recursive function \(\square \) of \(k+1 \) variables such that
 \[
 \square(n, x_1, x_2, \ldots, x_k) = \square^n(x_1, x_2, \ldots, x_k)
 \]
- \(\square \) is a universal function for \(k \) arguments.

Recursive and R.E. Sets

- Languages are now sets of numbers.
- A set is recursive if its characteristic function is total recursive.
- A set is recursively-enumerable if there is a total recursive function that enumerates it.
- Equivalently, a set is recursively-enumerable if it is the domain of some partial recursive function.

Halting and Divergence

- \(\square(x) \uparrow \) is used to mean that \(\square \) has a value for argument \(x \).
- \(\square(x) \downarrow \) is used to mean that \(\square \) diverges on argument \(x \).
- The set \(\{ j | \square(j) \downarrow \} \) is not recursively-enumerable: this is the halting problem.
- The set \(\{ j | \square(j) \uparrow \} \) is recursively-enumerable, but not recursive.
- The set \(\{ j | \square(0) \downarrow \} \) is not R.E. either, analogous to the blank-tape halting problem.

Problem: Exhibit a total function that is not computable.

- Define
 \[
 f(j) = \begin{cases}
 \square(j) + 1 & \text{if } \square(j) \downarrow \\
 0 & \text{otherwise}
 \end{cases}
 \]
- \(f \) is evidently total. \(f \) is not computable, since if it were, say \(\square_k \), then \(f(k) \) would give a contradiction.

Hilbert’s Tenth Problem

- This is an unsolvable problem of practical interest.
 - Give an algorithm that will determine whether a multi-variate polynomial equation has an integer solution.
 - Example of an equation: \(x^2 + 3y^3 + 13 = 0 \)
 - The problem of whether this is possible was posed by Hilbert in 1900.
 - This problem was not proved unsolvable until 1970, when it was established that every recursively-enumerable set of \(k \)-tuples is the set of solutions of some such equation.