Why are we doing this?

- Strings are **fundamental** to most formal systems (e.g. grammars).

- Strings **generalize** natural numbers (which are themselves very important) in a very natural way.

- Strings are **easy** to work with compared to set-theoretic definitions of natural numbers.
Informal Definition of Strings

- A string is just a sequence $x_1x_2\ldots x_n$ where $n \geq 0$.
- The elements of a string are called “letters” or “symbols”, but they could be members of any set.
- While infinite strings are sometimes used, for now we will be working only with finite strings.

Formal Definition of Strings

- A string over the set of letters Σ is any member of the following inductively defined set, named Σ^*:
 - The empty string, ϵ, is in Σ^*.
 - If a string x is in Σ^*, and s is in Σ, then sx is in Σ^*.
 - The only elements of Σ^* are those obtained by applying the above rules.
- By sx we mean a combination of s with x in such a way that both can be recovered from the result. This can be informally thought of as the “followed by” operator (similar to $[s \mid x]$ in the rex language).
Notes on the Empty String

- The empty string symbol λ (upper-case lambda) is a “meta symbol” and as such is never an ordinary letter in λ.

- Other symbols are often seen in place of λ:
 - λ (lower-case lambda) is used in CS 60.
 - ε (lower-case epsilon) used in some texts.

Notes on λx as an ordered-pair

- Effectively this designates an “ordered-pair” of λ with x, which could be written more verbosely as (λ, x).

- It is a pair because two things are combined.

- It is ordered because (λ, x) is not the same thing as (x, λ). (In fact, the latter is not meaningful in the current context.)
Ordered-Pairs as Sets

- There are ways of defining the ordered pair concept from more basic, set-theoretic, operations.

- A standard one is that every pair \((x, y)\) abbreviates a set \(\{\{x\}, \{x, y\}\}\).

- The key thing here is the assurance of the property:

 \((x, y) = (x', y')\) implies \(x = x'\) and \(y = y'\)

 i.e. that pairs are **decomposable** into their parts.

- This can be proved.

Proof that \((x, y) = (x', y')\) implies \(x = x'\) and \(y = y'\)

- Assume \((x, y) = (x', y')\).

- So \(\{\{x\}, \{x, y\}\} = \{\{x'\}, \{x', y'\}\}\).

- If \(x = y\), then the LHS is really the same as \(\{\{x\}\}\), a set of one element. So the RHS must also be a set of one element, which is to say that \(\{x'\} = \{x', y'\}\). But this can be true only if \(x' = y'\). We have \(\{\{x\}\} = \{\{x'\}\}\). Since these are sets of one element, the elements must be equal, so \(x\) = \(x'\). By the same argument, \(x = x'\). Combining with \(x = y\) and \(x' = y'\), we see that \(y = y'\).

- If \(x \neq y\), then the LHS is a set of two elements, and therefore the RHS is also. But \(\{\{x'\}, \{x', y'\}\}\) is a set of two elements only if \(x' \neq y'\). Since \(\{x, y\} \) and \(\{x', y'\}\) are now known to have two elements, while \(\{x\}\) and \(\{x'\}\) have one, we conclude that \(x = x'\). Then we are led to conclude that \(y = y'\), for if not, the two sets of two elements could not be equal, so neither could the original two sets.
Something to Think About

- In our previous argument about pairing, we appealed to certain ideas about sets.

- How can we capture those ideas succinctly as axioms, so that we can articulate exactly what we are using about sets?

Notes on \emptyset and pairing

- \emptyset is not a pair (\emptyset is the only such string with this property).

- \emptyset could be equated to the empty set.

- Example: The string abc is constructed as pairs (a, (b, (c, \emptyset))).

- As sets, this would be:
 $\{\{a\}, \{a, \{b\}, \{b, \{\{c\}, \{c, \{\}\}\}\}\}\}$

- Now you can see why we prefer the string notation.
String Concatenation

- Concatenation means “chaining together”, i.e. following one string by another.

- Concatenation will be shown by juxtaposition: xy is y concatenated to x.

- Some texts take concatenation as a primitive, given, operation.

String Concatenation

- Concatenation is a function or binary operator on Σ^* and is defined inductively:

 - $\varepsilon y = y$
 - $(\varepsilon x)y = \varepsilon(xy)$

 - On the left-hand sides above is the thing we are defining, and on the right how we are defining it.

 - This can be seen as analogous to defining $append$ in rex.
Why define by induction?

- Definition by induction is **precise**, compared to other alternatives.
- Definition by induction enables **proof** by induction.

String Axioms

- These axioms characterize strings, analogously to the way in which the Peano axioms characterize the natural numbers.
- In the following x, y, ... are implicitly quantified over strings
- s, s', ... are implicitly quantified over letters.
String Axioms

- **SA1**: \((\varepsilon x)\) (Either \(x = \varepsilon\) or \((\varepsilon x)(\varepsilon y) x = \varepsilon y\))
- **SA2**: \((\varepsilon x)(\varepsilon y) x \neq \varepsilon\)
- **SA3**: \((\varepsilon x, x')(\varepsilon y, y')\) \(\varepsilon x = \varepsilon x'\) implies \(\varepsilon = \varepsilon'\) and \(x = x'\)
- **SA4**: Let \(P\) be any predicate on \(\varepsilon\). Let \(P\) be any predicate on \(\varepsilon\).

\[
\begin{align*}
P(\varepsilon), & \quad (\varepsilon x)(P(x) \varepsilon (\varepsilon x)P(\varepsilon x)) \varepsilon x \quad \text{basis} \quad \text{basis} \\
& \quad (\varepsilon x) P(x) \quad \text{induction step} \quad \text{induction step}
\end{align*}
\]

- **SA4** is a “rule of inference”, allowing to prove properties by induction.

Example of Inductive Proof

- **ST1**: \((\varepsilon x) x\varepsilon = x\), in other words, \(\varepsilon\) concatenated to any string is just that string.

 - For proof, we identify \(P(x)\) in SA4 with \(x\varepsilon = x\).
 - SA4 says that ST1 follows if we can show two things:
 - \(P(\varepsilon)\), i.e. \(\varepsilon \varepsilon = \varepsilon\). \(\varepsilon \varepsilon = \varepsilon\)
 - \((\varepsilon x)(P(x) \varepsilon (\varepsilon x)P(\varepsilon x)\), i.e. \((\varepsilon x)(x\varepsilon = x \varepsilon (\varepsilon x)P(\varepsilon x) = x\varepsilon\)
 \(\varepsilon \varepsilon = \varepsilon\)

 - How are these two statements shown?
What we don’t need to prove

- **ST1’**: $(\Box x) \Box x = x$

 This looks very similar to ST1, but we don’t need to prove it. Why?

Another Example of Inductive Proof

- **ST2**: $(\Box x, y, z) x(yz) = (xy)z$. In other words, concatenation is associative.

- Here we identify $P(x)$ in SA4 with $x(yz) = (xy)z$.

- SA4 says that ST2 follows if we can show two things:
 - $P(\Box)$, i.e. $\Box (yz) = (\Box y) z$. **basis**
 - $(\Box x)(P(x) \Box (\Box x))$, i.e. $(\Box x)(x(yz) = (xy)z (\Box x)(yz) = ((x)y)z$ **induction step**

- How are these two statements shown?
Defining String Reversal

• We want to define inductively reversal (\(^R\) operator)

• Here’s an intuitively-correct idea:
 - \(\varepsilon^R = \varepsilon\)
 - \((\varepsilon x)^R = x^R\varepsilon\)
 - Note: We have to use \(sL\) rather than just \(s\) because \(x^R\varepsilon\) is not defined. But since \(s\) is a string, we can concatenate.

• Note that we are using concatenation to define this operator. This could be considered somewhat heavy-handed.

Defining String Reversal

• Another option would be to use an auxiliary function \(r\):
 - \(x^R = r(x, \varepsilon)\), where
 - \(r(\varepsilon, y) = y\)
 - \(r(\varepsilon x, y) = r(x, \varepsilon y)\)

• Here we haven’t used any overt concatenation, and this makes us feel better.

• Note that this is the familiar rex definition in disguise.
• We could now try to prove that the two versions of reversal are equivalent. We’ll table this.
Proving stuff about reversal (\(R \) operator)

- **ST3**: \((xy)^R = y^Rx^R\)
- Try induction with \(P(x): ([y](xy))^R = y^Rx^R\)
- **Basis**: \(P(\emptyset): (\emptyset)^R = \emptyset^R \emptyset^R\)
- **Induction step**: \(([y](xy))^R = y^Rx^R\) implies \(([y](\emptyset y))([\emptyset x])^R = y^R(\emptyset x)^R\)
- **LHS of = is**: \(((\emptyset x)y)^R\)
 = \((\emptyset(xy))^R\)
 = \((xy)^R(\emptyset \emptyset)\)
 = \((y^Rx^R)(\emptyset \emptyset)\) \(\quad\text{Justify each step}\)
- **RHS of = is**: \(y^R(\emptyset x)^R\)
 = \(y^R(x^R(\emptyset \emptyset))\)
 = \((y^Rx^R)(\emptyset \emptyset)\)

Free the Monoids!

- Algebraically, \(\emptyset^* \) is known as the “free monoid generated by \(\emptyset \)”.
 (usually serves to deter the casual reader from going any further)

- Recall that a monoid is a set together with:
 - An associative operator
 - An identity for the operator

- Identify the components that justify calling \(\emptyset^* \) a monoid.
Natural Numbers

- Pick \(\mathbb{S} \) to be any 1-letter alphabet. (e.g. use \(\emptyset \) as a letter).
- Then \(\mathbb{S}^* \) is essentially the set of natural numbers:
 - \(\mathbb{S}^0 \) is like 0
 - \(\mathbb{S}x \) is like \(x + 1 \)
- The string axioms are then equivalent to the Peano axioms.
- The induction rule is the usual mathematical induction principle.

Natural Numbers

- Addition is just concatenation over \(\mathbb{S}^* \).
- What are subtraction, multiplication, etc.?
- You’d need to define them inductively: more on this later.
Natural Numbers from Zip

- 0 is ∅
- n+1 is n ∪ {n}

for example:
- 1 is ∅ ∪ {∅} which is {∅} which has 1 element
- 2 is {∅} ∪ {{∅}} which is {∅, {∅}} which has 2 elements
- 3 is {∅, {∅}} ∪ {{∅, {∅}}} which is {∅, {∅}, {∅, {∅}}} which has 3 elements, etc.
- ...
- Let ∅ designate the set of natural numbers.

The Length | of a String

- |∅| = 0
- |∅x| = x+1
Some Properties of Length

• L_1: $|xy| = |x| + |y|$

• L_2: $|x^R| = |x|$
Definition of the Concept “Language”

- A **language** over an alphabet Σ is any subset of Σ^*.

- Give some precise examples of languages.

Operations on Languages

- Since languages are sets, we can define their **union, intersection**, etc. just as with any sets, e.g.

- Let L and M be two languages.

 $L \cup M = \{x \mid x \in L \text{ or } x \in M\}$
 $L \cap M = \{x \mid x \in L \text{ and } x \in M\}$
 $L - M = \{x \mid x \in L \text{ and } x \notin M\}$
Product of Languages

- Let L and M be two languages. Define
 \[LM = \{xy \mid x \in L, y \in M\} \]
 called the “product” or (loosely) the “concatention” of languages.

- Give examples.

- What if either is \emptyset?

Power Operator for Languages

- Let L be a language. Define the “n^{th} power” of L inductively:
 \[L^0 = \{\} \]
 \[L^{n+1} = L \cdot L^n \]

- Examples?
Plus and Star Operators for Languages

- Let L be a language. Define

$$L^* = L^0 \cup L^1 \cup L^2 \cup \ldots$$

- Define

$$L^+ = L^1 \cup L^2 \cup L^3 \cup \ldots$$

- Thus

$$L^* = \{\emptyset\} \cup L^+$$

- Give examples.

L^* vs. \sqcup^*

- They are the same, provided that L is the set of 1-letter strings, one for each letter in \sqcup.
Language Identities: Devise RHS’s

- \(L \emptyset = \)
- \(L\{\emptyset\} = \)
- \((LM)N = \)
- \(LL* = \)
- \(LL^+ = \)
- \(\{\emptyset\}^* = \)
- \(\{\emptyset\}^+ = \)
- \(\emptyset^* = \)
- \(\emptyset^+ = \)
- \((L \not\sqsupset M)N = \)
- \((L \not\sqsupset M^*)^* = \)

Solving a Language Equation

- This will be seen to be a useful device shortly:
- The equation \(L = LA \sqsupset B \) has as a solution for \(L \):
 \[L = BA^* \]
- How can we justify this?
Regular Operators and Languages

- Union, Star, and Product (Concatenation) are called the **Regular Operators** on Languages.

- A language is **regular** if it can be formed from languages consisting of only one string of one letter each using a **finite** number of regular operators.

- Note: * counts as only one operator, despite it being defined as an infinite union.

- Examples of Regular Languages?

True or False?

- Any language of exactly one element is regular.

- Any finite language is regular.

- ∅* - L, where L is finite, is regular.

- Every language is regular. To see this, let L = \{x_1, x_2, x_3, ...\}.

 Then L = \{x_1\} ∪ \{x_2\} ∪ \{x_3\} ∪ ..., which is clearly regular.
Regular Expressions

- A regular expression is a **shorthand** way of representing regular languages using regular operator symbols in conjunction with the following symbols.

- Each letter s in S stands for the language with just one string of one letter, that letter.

- L stands for the language $\{L\}$.

- \emptyset stands for the empty language \emptyset.

- Example: If $S = \{0, 1\}$, then 0 stands for the language with just one string, having one letter, 0.

Examples of Regular Expressions

- $0 \rightarrow 1$
- $(0 \rightarrow 1)^*$
- $(0 \rightarrow 1)0^*1^*$
- $((0 \rightarrow 1)0^*1)^*$
- $((L \rightarrow 1)0^*1)^*$
- $0^*110^* \rightarrow 1^*001^*$
Regular Expression Notation Notes

- Instead of `|`, some sources use infix `+` or `|` in regular expressions.

- `*` binds the tightest, then concatenation, then `|`.

- `|` is not a regular operator, nor is `-`.

Regular Expressions as Patterns

- Any language can be equated to a “pattern”, namely the pattern that matches all strings in the language.

- Examples:
 - `0*` is the pattern that matches strings containing only 0’s
 - `0*10*` is the pattern that matches strings in `{0, 1}*` containing exactly one 1.
 - `0*100*` is the pattern that ...
 - `0(0 | 1)*1`
 - `((0 | 1) (0 | 1))*`
 - `(0 | 1) (10)* (1 | 1)`

- Note: To qualify as a pattern, the language of the expression must be that of exactly the set of strings matching the pattern, not a subset or superset.
Regular Expressions as Patterns

- Give regular expressions for the following patterns over \{0, 1\}:
 - Strings in which each 1 is followed by a 0.
 - Strings in which no 1 is followed by a 0.
 - Strings in which every 1 is preceded by and followed by a 0.
 - Strings in which the number of 1’s is divisible by 3.
 - Strings in which there is no run of 3 consecutive 1’s.

Application: Searchers

- Do `man egrep` on a UNIX system.

- How do such search algorithms work?
Automata

- Colloquially, an automaton (plural “automata”) is an autonomous device (such as a robot or wind-up toy).
- In CS, the term has a more specific meaning: that of an abstract mathematical machine that can perform a specific function.
Uses of Automata

- There are many uses, one of which is to specify algorithms for accepting languages.

- An automaton **accepts a language** if it can tell, for any given input string, whether or not the string is in the language.

Example: Compilers, etc.

- Every compiler contains an automaton, that tells whether or not the input string is well-formed, i.e. is in the language that it compiles.

- Every pattern search program is effectively an automaton for recognizing patterns.
Finite-State Automata (FSA or DFA, they are the same)

- An automaton is finite-state if its behavior is representable by transitions between a states in a finite set, some of which are designated accepting and others not.

- Each automaton has a designated start state.

Examples of FSA

- An FSA capable of accepting exactly the strings ending with 1.
Examples of FSA

- An FSA capable of accepting exactly the strings containing no two consecutive 1’s.

Thing to Check

- For each combination of a state and a symbol, there should be exactly one arrow leaving the state with that symbol.

- This is the “deterministic” (“D”) in DFA.

- If this property does not hold, better fix it; your automaton might be wrong.
Application

- One way to implement a search is to construct, perhaps on the fly, an automaton that accepts the corresponding language, then simulate the automaton on the given input.

Two Ways to Define Specific Languages

- Give an FSA that accepts the language.
- Give a regular expression for the language.
Remarkable Fact

- The preceding two ways are equivalent.

- Equivalent here means that the two methods define the same family of languages.

Application of this Theory

- Sometimes it’s easier to give an automaton for a language.

- Sometimes it’s easier to give a regular expression.

- It would be nice to be able to go from one to the other more-or-less freely.
Regular Expression from FSA

- Label the States

- Identify each state with the set of paths from the start state to it. This set is a language.
- The language accepted by the FSA is the \textit{union} of the paths to each of the accepting states, in this case \(L \cup M \).

Deriving Closed Forms

- View the acceptor as a set of \textit{regular-expression equations}:
 - \(L = L0 \cup M0 \cup \) \(\emptyset \)
 - \(M = L1 \)
 - \(N = M1 \cup N(0 \cup 1) \)
 - The \(\emptyset \) is on the RHS of the starting state only.
 - We want to solve for \(L \) and \(M \), and take the union of the solutions.
Solving RE Equations

- **Solve** for L and M:
 - L = L0 » M0 » M
 - M = L1
 - N = M1 » N(0 » 1)

- **Substitution** Operation:
 - A LHS variable can be replaced with its RHS, so replacing M in the L equation:
 - L = L0 » L10 » L
 - L = L(0 » 10) » L

- **Elimination** Operation:
 - An equation of the form L = LA » B has the solution L = BA*, so:
 - L = L(0 » 10)*, or more simply L = (0 » 10)*

- **Substitution again**:
 - M = L1
 - M = (0 » 10)*1

Conclusion

- The language accepted by the FSA below is
 - L » M
 - which is (0 » 10)* » (0 » 10)*1
 - or more simply
 - (0 » 10)*((0 » 1)

![Diagram of FSA](image-url)
FSA → RE Algorithm

- Express the FSA as a set of RE equations
 - Each state is a variable.
 - Each variable is equated to a union of expressions showing how to get to that state in one step from other states.
 - The start state has \(_ \) on the RHS as well.
- Solve the RE equations for the variables:
 - The variables, along with their equations, are solved for one at a time.
 - Choose a variable for elimination.
 - Express that variable in terms of the remaining variables only, using the \(\ast \) operator (\(L = LA \ast B \) has the solution \(L = BA^+ \)).
 - Substitute the solution for all occurrences of the variable in the remaining equations.
 - Repeat the above steps until no variables remain.
- Work backward, substituting the solutions found for other variables, until each variable is expressed in closed form.

Another Example

- **Solve:**
 - \(L = L1 \ast M0 \ast N0 \ast _ \)
 - \(M = L0 \ast M1 \ast N1 \)
 - \(N = L1 \ast M1 \ast N0 \)

- Note that these equations don’t really correspond to a DFA, but it doesn’t matter.
- Eliminate \(N \), using \(N = (L1 \ast M1)0^* \)
 - \(L = L1 \ast M0 \ast (L1 \ast M1)0^*0 \ast _ \)
 - \(M = L0 \ast M1 \ast (L1 \ast M1)0^*1 \)
- Regroup:
 - \(L = L(1 \ast 10^*0) \ast M(0 \ast 10^*0) \ast _ \)
 - \(M = L(0 \ast 10^*1) \ast M(1 \ast 10^*1) \)
Solution, continued

- Solving:
 - \(L = L(1 \cdot 10^0) \cdot M(0 \cdot 10^0) \cdot L \cdot M = L(0 \cdot 10^1) \cdot M(1 \cdot 10^1) \)
 - Eliminate \(M \) using \(M = L(0 \cdot 10^1) (1 \cdot 10^1) \), giving:
 - \(L = L(1 \cdot 10^0) \cdot L(0 \cdot 10^1) (1 \cdot 10^1)(0 \cdot 10^0) \cdot L \)
 - Regrouping:
 - \(L = L((1 \cdot 10^0) \cdot (0 \cdot 10^1) (1 \cdot 10^1)(0 \cdot 10^0)) \cdot L \)
 - Solving:
 - \(L = ((1 \cdot 10^0) \cdot (0 \cdot 10^1) (1 \cdot 10^1)(0 \cdot 10^0))^* \)
 - Working backward:
 - \(M = ((1 \cdot 10^0) \cdot (0 \cdot 10^1) (1 \cdot 10^1)(0 \cdot 10^0))^* (0 \cdot 10^1)(1 \cdot 10^1) \)
 - \(N = (L1 \cdot M1)^0 = ... \)

Summary so far

- The language accepted by an FSA is a regular language.
- We haven’t shown that the converse is true.