Software Development

Life-Cycle Models

Essential Processes in Software Development

- Requirements
- Design
- Implementation
- Test

Models

A "Software Life-Cycle Model" specifies when the processes are conducted and how they feed into each other.

"Life-Cycle" Models

- Single-Version Models
 - Big Bang Model
 - Waterfall Model
 - Waterfall Model with "back flow"
 - "V" model: Integrating testing
- Incremental/Iterative Models

Big Bang Model

Big Bang.com

Place your software request in the slot. We will feed your CD when done.
Waterfall Model

Requirements → Design → Implementation → Test

"V" Model
Each phase has corresponding test

Requirements → System Design → Program Design → Implementation

Acceptance Test → Integration Test → Unit Test

When to use single version?
- For simple projects!

When not to use single version?
- For everything else!

Why not single-version?
- Initial requirements are speculative
Growth in requirements

![Graph showing growth in requirements](image)

Why not single-version?

- Initial requirements are *speculative*
- Initial designs are *speculative*

Software is “hard”

- Software is very "hard".
 - Discover Magazine, 1999: Software characterized as the most complex "machine" humankind builds.

Why not single-version?

- Initial requirements are *speculative*
- Initial designs are *speculative*
- Speculative decisions compound in absence of feedback

Why not single-version?

- Initial requirements are *speculative*
- Initial designs are *speculative*
- Speculative decisions compound
- High complexity/low adaptability

Decrease in Productivity

![Graph showing decrease in productivity](image)

Source: Measures For Excellence, Putnam, 1992. Based on 1,600 systems.
Why not single-version?

- Initial requirements are speculative
- Initial designs are speculative
- Speculative decisions compound
- High complexity/low adaptability
- High risk issues identified/addressed late in the life cycle

Risk

not the game...

“Wicked Problems”

“problems that are fully understood only after they are solved the first time” (however poorly)

Source of some of this

Prentice-Hall, 1990

basically a criticism of the waterfall model

Some Roots of Wickedness

- Risk: A customer not knowing exactly what he/she wants; changing expectations as project progresses.

- Risk: Staff who are inexperienced in the problem domain, or with the appropriate implementation techniques.

US Air Force Risk Classification

- Performance risk: The project might not meet requirements or otherwise be fit for use.

- Cost risk: The budget might get overrun.

- Support risk: The software might not be adaptable, maintainable, extendable

- Schedule risk: The project might be delivered too late.
The Waffle Principle

- “Plan to throw the first one away; you will anyhow.”

"Life-Cycle" Models

- Single-Version Models
- Incremental/Iterative Models

Iterative vs. Incremental

- To some people these are different
- To some they are the same

You are here

Front-Loading/Risk Driven

- Tackle the unknown and harder parts earlier rather than later.
- Better to find out about infeasible, intractable, or very hard problems early.
- The easy parts will be worthless if the hard parts are impossible.
- Find out about design flaws early rather than upon completion of a major phase.

Iterative Development

- In each iteration:
 - Identify the largest risks of the project
 - Brainstorm on ways to reduce or eliminate these risks
 - Form a concrete plan with specific artifacts
 - Carry out the plan

Iterative/incremental “Life-Cycle” Models

- Sawtooth Model
- Spiral Model & Variants
 - ROPES Model
 - Controlled Iteration Model: Unified Process
 - Time Box Model
- Scrum Model
- Fountain Model
Sawtooth Model (Brugge)

Requirements Analysis

System Design

Program Design

Implementation

Demo Prototype 1

Demo Prototype 2

Integration Test

Unit Test

Acceptance Test

Boehm Spiral Model

Iterates cycles of these project phases:
1. Requirements definition
2. Risk analysis
3. Prototyping
4. Simulate, benchmark
5. Design, implement, test
6. Plan next cycle (if any)

ROPES Model - Similar to Spiral

Rapid Object-Oriented Process for Embedded Systems

Bruce Douglass

- Iterates the following sequence of phases repeatedly:
 - Requirements analysis
 - System analysis
 - Object analysis
 - Architectural design
 - Detailed design
 - Coding
 - Design
 - Iterative prototypes

- The next phase is started before the end of the previous phase (say at 80% point).

Controlled-Iteration Model

- Four phases per iteration
 - Inception: Negotiate and define product for this iteration
 - Elaboration: Design
 - Construction: Create fully functional product
 - Transition: Deliver product of phase as specified

Rational Unified Process
(a form of controlled iteration)

Management
Business Modeling
Implementation
Test

Phases:
- Inception
- elaboration
- Transition

Supporting Workflows:
- Configuration Mgmt
- Management Environment

Iterations within phases

Time-Box Requirement
(can be used in iterative or incremental)

- Requirements analysis
- Initial design
- while(not done)
 {
 Develop a version within a bounded time
 Deliver to customer
 Get feedback
 Plan next version
 }

Scrum, A cure for Wicked?

Scrum first mentioned in

Scrum Model
(incremental model, includes some aspects of team structure, as well as process)

A small group is responsible for picking up the ball and moving it toward the goal.

See http://www.cetus-links.org/oo_ooa_ood_methods.html

Argument for the Scrum Model
over other iterative models

- A software development project might not be compartmentalizable into nice clean phases as the Spiral models suggest.

- Scrum may be "just the thing" for wicked problems, because the team can quickly react to new information.

Some Principles of Scrum Model

- Always have a product that you can theoretically ship: "done" can be declared at any time.
- Build early, build often.
- Continuously test the product as you build it.
- Assume requirements may change: Have ability to adapt to marketplace changes during development.
- Small teams work in parallel to maximize communication and minimize overhead.
Use of Iteration in Scrum

http://www.controlchaos.com/scrumwp.htm

- Each iteration consists of all of the standard Waterfall phases,
- but each iteration only addresses one set of functionality,
- Overall project deliverable has been partitioned into prioritized subsystems, each with clean interfaces.
- Test the feasibility of subsystems and technology in the initial iterations.
- Further iterations can add resources to the project while ramping up the speed of delivery.
- Underlying development processes are still defined and linear.

Fountain Model

(Ian Graham, et al., The OPEN Process Specification
OPEN = Object-oriented Process Environment and Notation)