1. **[10 Points]** CLRS, Exercise 23.2-4 (page 574). Explain your answers carefully.

2. **[10 Points]** CLRS, Exercise 23.2-5 (page 574). Explain your answers carefully.

3. **[15 Points]** CLRS, Exercise 23.2-8 (page 574). If the algorithm works, use the General Theory of Minimum Spanning Trees to prove it. If it doesn’t work, give a counterexample by showing the tree constructed by this algorithm and show that it is not a minimum spanning tree.

4. **[25 Points]** Barůvka’s Algorithm! In class we mentioned that the first algorithm for computing minimum spanning trees was published by the Czech mathematician Otakar Barůvka in 1926. The algorithm works like this:

   ```
   A = {}; // Comment: A is a subset of a minimum spanning tree
   Consider the V vertices in the graph as V connected components;
   while A contains fewer than V-1 edges
   {
     for each connected component C
     {
       Find the least weight edge (u,v) with one vertex in C and
       one vertex not in C;
       Add edge (u,v) to A;
     }
     Compute the new connected components;
   }
   return A \ // Comment: This is a minimum spanning tree!
   ```

 Notice that if C_1 and C_2 are two different connected components before we begin the for loop, then inside the for loop the algorithm will choose the least weight edge coming out of component C_1 and also the least weight edge coming out of C_2. The edge chosen by C_1 might join C_1 and C_2 into a new connected component, but this new connected component will not be discovered until the for loop has ended! In other words, both C_1 and C_2 will each get an opportunity to choose the least weight edges coming out of their components!

 (a) Give a counter-example that shows that Borůvka’s Algorithm doesn’t work!! (You might find it useful to use the fact that some edges in the graph may have the same weight.) Show your counter-example graph and explain carefully why Borůvka’s Algorithm would not compute a minimum spanning tree in this case.
(b) Now assume that no two edges in the graph have the same weight. By the OPTIONAL BONUS PROBLEM below, such a graph has exactly one minimum spanning tree (you may just use this fact here, although you are encouraged to prove it in the bonus problem!). Under this assumption, prove that Borůvka’s Algorithm is correct.

(c) Why doesn’t your proof from part (b) work if some edges in the graph have the same weights?

(d) How could Borůvka’s Algorithm be modified slightly to work in the most general case that edge weights are not necessarily distinct?

(e) Describe an implementation (how the algorithm would be implemented using appropriate data structures) for Borůvka’s Algorithm and derive its running time. Try to make your implementation as fast as you can.

5. [25 Point OPTIONAL BONUS PROBLEM!] Let G be a connected undirected graph in which each edge has a distinct edge weight (that is, no two edges have the same weight). Show that there is a unique minimum spanning tree in the graph.