Turing Machines

Mathematical Machines
- “Mathematical” (as opposed to mechanical) machines
- Turing Machines (potentially infinite-state)
- Finite-state machines
- Other categories (cf. CS 142, Theory of Computation)

What is a Turing Machine?
- A computational model thought to be universal from the viewpoint of functions that can be computed
- Proposed by Alan M. Turing as a means of discussing such functions
- Universality generally accepted by computer scientists based on Turing’s argument (see text) and other evidence

Alan M. Turing (1912-1954)

Turing Milestones
- 1936: Essay on computability
- 1940: Machine ("the Bombe") for decrypting the German Enigma code machine
- 1943: Participated in design and construction of an electronic computer (the "Colossus")
- 1949: First paper on proving correctness of programs
- 1950: Paper on AI ("the Turing test")
- 1951: Biological pattern formation ("morphogenesis")

The Enigma (from NSA museum)
Another Enigma?

Play about Turing

"Breaking the Code" by Hugh Whitemore
Played in London, New York, LA
Public TV version

Turing Web Pages

- Home Page (by Andrew Hodges)
- Home Page (Sheffield University)
- Clark University
- From History of Math
- History of Mathematics Archive
- Internet Scrapbook
- University of Manchester

Turing Machine Details

- The tape: an unbounded amount of memory. Consists of cells, each containing exactly one of a pre-convened set of characters (such as '0', '1', ' ' blank)
- The control: a finite amount of memory, the control states. Defines control functions.

Turing Machine

More about the Tape

- Only a finite portion of the tape is "non-blank" at any time.
- New cells are added at either end "as needed".
The Complete State of a TM

- The complete state of a TM is determined by:
 - The control state
 - The symbol currently under the head
 - The sequence of symbols to the right of the head
 - The sequence of symbols to the left of the head

Control Functions

- The control determines the following, given any combination of control state \((q) \) and symbol under the head \((s) \):
 - A new control state \((q') \)
 - A new symbol to be written \((s') \)
 - A head motion \(m \) (Left, Right, or None)

- Call the control partial-function \(f \), so that \(f(q, s) = (q', s', m) \)

Sequential Operation

- The machine begins in a specified starting control state, with initial tape contents, and the head positioned at a standard place with respect to the contents.

- The machine goes through a sequence of states until it arrives at a halting state.

Halting Convention

- If \(f(q, s) \) is unspecified, then the TM is said to have **halted** in the current state.

5-tuple notation

- The control partial-function \(f \), so that \(f(q, s) = (q', s', m) \) is often written as a set of 5-tuples of the form:
 \((q, s, q', s', m) \)

Various TM Categories

- **Transducer**: Starting with the initial tape contents, produce a new tape contents

- **Acceptor or Classifier**: Starting with the initial tape contents, halt in either an accepting state or a rejecting state

- **Generator**: Starting with an empty tape, generate the elements of some sequence on the tape.
Examples of TM Categories

- **Transducer**: Multiply two binary numerals
- **Acceptor or Classifier**: Determine whether or not a binary numeral is prime
- **Generator**: Starting with an empty tape, generate numerals for the primes, each separated by a blank

TM Multiplying Example

<table>
<thead>
<tr>
<th>Initial</th>
<th>Final</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Initial</th>
<th>Final</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Simplifying TM Programming

- Allow symbols to be erased
- Use extra symbols: can always convert to fewer symbols later (by encoding the larger set)
- Use symbols with/without markers: these in effect are just a larger symbol set
- Use special encodings, such as 1-adic encoding (number n is n 1's or n+1 1's)

1-adic Multiplying

<table>
<thead>
<tr>
<th>Initial</th>
<th>Final</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Initial</th>
<th>Final</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1-adic Multiplier Structure

<table>
<thead>
<tr>
<th>Multiplicand</th>
<th>Multiplier</th>
<th>Product Area</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Multiplicand</th>
<th>Multiplier</th>
<th>Product Area</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1-adic Multiplier Scheme

- Check whether the multiplicand is 0 (no 1's). If so, return to home position and halt.
- For each 1 in the multiplier:
 - Copy the multiplicand to the right of the accumulated product
 - Erase the leftmost 1 in the multiplier
 - Until all multiplier 1's have been erased
- Then restore the multiplier 1's and halt.
1-adic Multiplier In Operation

How to tell when done?

- Each time the multiplicand is copied, the leftmost 1 of the multiplier will be set to blank (it will be restored at the end).
- Moving left from \(q_1 \), if there is a 1 then the multiplier has not been decimated.

Completing the Machine (Sketch)

- We present this as an informal set of triples: (start state, what happens, end state)
- The “what happens” parts might require additional states to implement.
- (\(q_0 \), skip left over multiplier, \(q_1 \))
- (\(q_1 \), check multiplicand for 0, \(q_1 \) \(\rightarrow \) \(q_3 \))
- (\(q_2 \), skip right over multiplier, \(q_4 \)) \(\rightarrow \) major
- (\(q_3 \), skip right over multiplicand, \(q_4 \)) \(\rightarrow \) major
- (\(q_4 \), skip right over multiplier, \(q_5 \))

How to copy the multiplicand?

- This is tricky, because the multiplicand can be arbitrarily long; we cannot “count” arbitrarily-high in the control of the machine alone.
- During copying, make each 1 of the multiplicand into a 0. At the end of copying, turn all 0’s back to 1’s.
- The machine is done copying when there are no 1’s left.

Completing the Machine (Sketch, part 2)

- (\(q_6 \), if blank to left, \(q_{18} \)) \(\rightarrow \) major jump
- (\(q_7 \), if non-blank to left, skip left over 1’s, \(q_6 \))
- (\(q_8 \), move right, \(q_7 \))
- (\(q_9 \), move left to 1, \(q_8 \))
- (\(q_{10} \), set (multiplicand bit) to 0, \(q_9 \))
- (\(q_{11} \), move right to 1, \(q_{10} \))
- (\(q_{12} \), set (multiplier bit) to blank, \(q_{11} \))
Completing the Machine (Sketch, part 3)

- \(q_{11}\), move right to blank, \(q_{12}\)
- \(q_{12}\), move right to blank, \(q_{13}\)
- \(q_{13}\), write 1 (product), \(q_{14}\)
- \(q_{14}\), move left to blank, \(q_{15}\)
- \(q_{15}\), move left to 0 (multiplicand), \(q_{16}\)
- \(q_{16}\), convert 0's to 1's until blank, \(q_{17}\)
- \(q_{17}\), move right to blank, \(q_{13}\)
- \(q_{18}\), restore blanks in multiplier to 1, \(q_{13}\)

Turing's Hypothesis

- Turing’s Hypothesis is that for every computable function there is some Turing machine that computes it.
- Turing’s argument was based on a direct appeal to intuition.

Turing’s Hypothesis (2)

- In order to give a sound proof of the hypothesis, it would be necessary to characterize what it means to be computable.
- This would entail presenting another convincing notion of computability, which would have to be similarly argued.
- Most computer scientists and mathematicians accept Turing’s notion as the notion.

Turing’s Hypothesis (3)

- Other natural notions of computability have been proposed, such as systems of recursive functions.
- All such notions have been proved equivalent to Turing machines through appropriate encodings.

Non-Computable Functions

- There are more partial functions, say, from the natural numbers to themselves, than there are Turing machines:
 - The infinite set of functions \(N \rightarrow N\) is not countable (can’t be enumerated).
 - The infinite set of Turing machines is countable (can be enumerated).

Divergence

- A Turing machine is said to diverge on an input if it never halts.
- Divergence is like a program that never terminates, e.g. either due to an infinite loop or a search of an infinite space that can never yield an answer.
- If a machine diverges, the partial function it computes is undefined for this input.
A Specific Non-Computable Function

- Let T_0, T_1, T_2, \ldots be an enumeration of all Turing machines (over some specific alphabet, such as {0, 1, blank}).
- Similarly let x_0, x_1, x_2, \ldots be an enumeration of all tapes for this alphabet.
- Define the partial function H as follows:

 \[
 H(i) = \begin{cases}
 1 & \text{if } T_i \text{ diverges on input } x_i \\
 \text{undefined (i.e. intentionally diverges)} & \text{if } T_i \text{ halts on } x_i
 \end{cases}
 \]

Implications of the Halting Problem

- The “Halting Problem” is that of finding a TM that will tell whether the TM will diverge on its own description.
- The unsolvability of this problem does not hinge on TMs; it applies to any universal computing model (e.g., rex programs).

The Reducibility Concept

- There are many other problems that are unsolvable.
- The standard way of proving that a given problem P is unsolvable is to “reduce” the halting problem to P.
- In other words, if P were solvable, then the halting problem would be also.
- The halting problem is not solvable, therefore P is not either.

The Blank-Tape Halting Problem

- It can be shown that there is nothing special about requiring "its own description".
- Any standardized input, such as an all blank tape, will also suffice.
- The halting problem is still not solvable in this revised case.

There is no algorithm that will decide whether an arbitrary Program halts on an arbitrary input

- For example, the problem of devising an algorithm that determines whether an arbitrary Turing machine halts on an arbitrary input.
- The halting problem reduces to this problem, since if this problem were solvable, so would the halting problem be (as a special case).
- More on this in new Computer Science 81 (Computability and Logic)