Binary Relations

- A binary relation is a set of ordered pairs, with the elements of each pair drawn from a common set.
- Example: \{ [1, 2], [2, 3], [1, 3] \}

Example Binary Relation Implementation

- Consider the binary relation "can be donor for" on the domain of blood types: \{ "A", "B", "AB", "O" \}
- As a list, this relation could be represented:

Another Binary Relation Implementation

- With each first element of some pair, give the list of second elements to which the first element is related:
- Compare the two representations.

Directed Graphs

- A Directed Graph is a way of presenting a binary relation:
 - The nodes (shapes) of a directed graph correspond to the elements in the domain.
 - The arcs (arrows) of a directed graph correspond to the pairs that are related.
A Small Directed Graph Example

- For the binary relation can be donor for represented as a list previously:
 \[
 \{["A", "A"], ["A", "AB"], ["B", "B"], ["B", "AB"], ["AB", "AB"],
 ["O", "B"], ["O", "AB"]\}
 \]
 the directed graph would be:

- Each page in the world-wide web can be considered a node.
- Each hyperlink from one page to another is an arc.

A Large Directed Graph

Properties of Binary Relations (1 of 2)

- The previous relation example illustrates two common properties that a binary relation may have:
 - transitive property: For every x, y, z in the domain *,
 if x is related to y and y is related to z,
 then x is related to z.
 - reflexive property: For every x in the domain
 x is related to x.

Properties of Binary Relations (2 of 2)

- The previous example has only the second of the following additional two common properties:
 - symmetric property: For every x, y in the domain
 if x is related to y then y is related to x.
 - anti-symmetric property: For every x, y in the domain
 if x is related to y and y is related to x, then
 \(x = y\).

Partial Orders

- A relation with the reflexive, anti-symmetric, and transitive properties is called a partial order.

Equivalence Relations

- A relation with the reflexive, symmetric, and transitive properties is called an equivalence relation. Such a relation generalizes the notion of equality, since in this case if x is related to z and y is related to z, then x is related to y.

In other words, if each of a set of elements is related to a common thing, the elements in the set and the common thing are all related to each other.

Equivalence:
Example of an Equivalence Relation

- Consider the relation "is a homophone of" ("sounds the same as") on a set of words, such as ("air", "ere", "heir", "buy", "bye", "deew", "do", "due", "ewe", "you", "yew")
 - Reflexive: Every x is a homophone of x.
 - Symmetric: If x is a homophone of y then y is a homophone of x.
 - Transitive: If x is a homophone of y and y is a homophone of z, then x is a homophone of z.
- Therefore this is an equivalence relation.

Example of not an Equivalence Relation

- Consider the relation "is a synonym for" ("means the same as")
 - Reflexive: Every x is a synonym for x.
 - Symmetric: If x is a synonym of y then y is a synonym of x.
 - Transitive: NOT: If x is a synonym of y and y is a synonym of z, then x is a synonym of z.
 (Example: "angry" is a synonym for "mad", and "mad" is a synonym for "insane", but "angry" is not a synonym for "insane").
- Therefore this is not an equivalence relation.

Undirected Graphs

- An undirected graph is a way of presenting a symmetric binary relation:
 Since whenever x is related to y also y is related to x, we don't have to show direction with arcs. Instead of calling them arcs then, it is common to call them edges.

Undirected Graph Example

- An example of a symmetric relation and its undirected graph is "can be a synonym of":

More Information Structures?

- There is a lot more to be said, and our next topic in this thread will be trees.
- But for now, we will discuss some ways to work with these representations in an actual language.