Data Abstraction and Represenation
General Data Characterizations

- **Abstraction**: the data from a *behavioral* viewpoint (what can be done with the data)

- **Representation**: the data as represented in the computer (how the behaviors are implemented)

- **Presentation**: the data as presented to the user (what we see)
General Data Characterizations

Presentation

Abstraction

Representation

01101100
10110110
01011111
00001111
11101101
10101011
Example: Natural Numbers

- **Presentation**: Decimal numerals:

 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, ...

- **Representation**: Binary:

 0000, 0001, 0010, 0011, 0100, 0101, 0110, ...

- **Abstraction**: Peano axioms
Peano Axioms (1889)

- \(\mathbb{N} \) designates the set of natural numbers
- 0 is a particular natural number in \(\mathbb{N} \)
- \(S \) is a function \(S: \mathbb{N} \rightarrow \mathbb{N} \), such that:
 - For all \(x \in \mathbb{N} \) \(S(x) \neq 0 \).
 - For all \(x, y \in \mathbb{N} \) \(S(x) = S(y) \) implies \(x = y \).
- If \(P \) is any predicate, such that
 - \(P(0) \)
 - for all \(x \in \mathbb{N} \) \(P(x) \) implies \(P(S(x)) \)
then for all \(x \in \mathbb{N} \) \(P(x) \).
Peano vs. Decimal Presentation

- 0 is decimal is Peano 0
- 1 is $S(0)$
- 2 is $S(S(0))$
- Number n in general is $S(S(S(...S(0))))...$
 - n S's
- $0 \neq 1$, $S(1) \neq S(2)$, etc.
Aside: Peano’s Space-Filling Curve

To fill the space of a square with a single curve:

Start with a line across the diagonal.

Define operation X:

Replace a line segment with a curve segment as shown:

Iterate X ad infinitum
Peano’s Space-Filling Curve

1st iteration
Peano’s Space-Filling Curve

2nd iteration
More Peano Curve Iterations

(demo http://library.thinkquest.org/26242/full/fm/fm25.html?tqskip1=1&tqtime=0828)
The Purpose of Abstraction in CS

- To abstract means to **eliminate irrelevant detail**.
- This is vital in presenting simple, crisp, **specifications** of what software does.
- It is also useful in **hiding detail** from those who don’t need to know about it:
 - They can’t mess with it.
 - One can change the details without changing the concept.
Abstract Art: Similar meaning, but not the same purpose

Two paintings of a tree by Mondrian.
Abstractions in Disciplines

- Chemistry is an abstraction of Physics.
- Biology is an abstraction of Chemistry.
- Genetics is an abstraction of Biology.

Why did these abstractions evolve?
Abstraction Exercise

- For discussion next time:
 - Think up and describe an area outside of CS where you (or others) use abstraction.
Open-List Abstraction

- An extension of Peano ideas
- Provides a way to create and manipulate lists in a programming language
- All definitions have a mathematical basis.
- In the text, we refer to
 - **information structures** (abstraction and presentation) vs.
 - **data structures** (implementation and representation).
Information Structures vs. Data Structures

- Information structures are an *abstraction* of data structures.
- Example: A “list” information structure, to give a few of many possible data structures:
 - could be an array
 \[
 \begin{array}{cccc}
 a & b & c & d \\
 \end{array}
 \]
 - or could be a linked list
 \[
 a \rightarrow b \rightarrow c \rightarrow d
 \]
- Each of these is an *representation* or *implementation* of the abstraction.
Array vs. List Implementation

- Array advantages:
 - Constant time access to any element based on the index of the element
 - Less storage space, since don’t store pointers

- Linked list advantages:
 - Does not require contiguous memory locations to hold array elements; uses fragmented memory more efficiently.
 - Less expensive to insert or remove items.
List Abstraction

- In an abstract sense, what matters most in a list is the *order* of the elements.

- We don’t have to say how the list is represented in the machine.

- We can just agree on some *presentation* or *notation* that shows this *order*, e.g.

 \[a, b, c, d]\
Idea of “Structure”

- **Information** is composed of:
 - **Primitives**: *atomic* units of an agreed-upon universe, such as:
 - numbers
 - strings
 regarded as “indivisible” for the current discussion.

- **Structures**: *collections* of information, possibly with imposed ordering information
List Structures

- Lists notation (presentation) we will often use:
 \[2, 3, 5, 7\]
- The notation resembles ones you’ve seen for sets:
 \{2, 3, 5, 7\}
- Distinctions:
 - Order matters with lists; it doesn’t for sets.
 - Duplication matters in lists; it doesn’t for sets.
Equality for Lists

- Two lists are defined to be equal when they have the same number of elements, and their elements occur in the same order.

- Examples:

 \[[1, 2, 3] \text{ is equal to } [1, 2, 3] \]

 \[[1, 2, 3] \text{ is not equal to } [3, 1, 2] \]

 \[[1, 2, 3] \text{ is not equal to } [1, 1, 2, 3] \]
The (one and only) Empty List

- The list with no elements

- The empty list is notated:

 \[
 \[]
 \]

- Also called the “null list”
Lists of Various Types of Elements

- List of integers:
 [-3, -2, -1, 0, 1, 2, 3]

- List of floats:
 [3.14, 6.0238e23, -0.4567]

- List of strings:
 [“Mary”, “had”, “a”, “little”, “dog”]
Mixing types of elements

- **Can** we mix types of elements?
 Yes!

- **Should** we mix types of elements?
 Not if avoidable, but may be convenient.
Specialized Uses of Lists

- Pairs:

 \[[1, 2] \ [3, 4] \ [5, 6] \]

- Triples:

 \[[1, 2, 3] \ [4, 5, 6] \]

- \(n \)-tuples:

 \[[x_1, x_2, x_3, ..., x_n] \]
 \[[y_1, y_2, y_3, ..., y_n] \]
Implementing Set Abstraction using Lists

- A set is not a list, but
- A set can be *represented* by a list:
 - simply *ignore* the ordering of the list, and
 - either:
 - ignore duplicates, or
 - guarantee no duplicates

- Ignoring vs. guaranteeing have advantages and disadvantages (why?)

called a representation invariant
Lists of Lists

- In order to keep track of, or manage, an arbitrary collection of lists, we can use lists with lists as elements.
- List of pairs: [[1, 2], [3, 4], [5, 6]]
 - The ordering within each pair can be respected or not, as we desire (ordered vs. unordered pair).
- List of triples: [[[1, 2, 3], [4, 5, 6]]
- List of assorted-size lists:
 - [[1, 2, 3], [2, 3], [3], []]
Lists can be Nested Arbitrarily-Deeply

- List of lists of lists:
 \[
 \begin{array}{c}
 \{ \{ [1, 2, 3], [2, 3] \}, \{ [3], [] \} \}
 \end{array}
 \]

- Lists of lists during “sort by repeated merging”:
 \[
 \begin{array}{c}
 [[3], [8], [5], [1], [2], [7], [6], [4]] \\
 [[3, 8], [1, 5], [2, 7], [4, 6]] \\
 [[1, 3, 5, 8], [2, 4, 6, 7]] \\
 [[1, 2, 3, 4, 5, 6, 7, 8]]
 \end{array}
 \]
Length of a List

- The **length**, or number of elements, in a list is the number at the "top level"

 \[\begin{array}{c}
 \text{[[[1, 2, 3], [2, 3]], [3], []]} \\
 \end{array} \]

 has length 2

 \[\begin{array}{c}
 \text{[[[1, 2, 3, 4], [[1, 2], [3, 4]], [[[1, 2, 3, 4]]]]} \\
 \end{array} \]

 has length 3
The *member* function

- **member** tells whether a specified element is in a specified list. It returns 1 or 0 accordingly:

 - `member(11, [5, 7, 11, 13]) ⇔ 1`
 - `member(12, [5, 7, 11, 13]) ⇔ 0`
 - `member(3, [[[1, 2, 3], [2, 3]], [[3], []]]) ⇔ 0`
Implementing
Other Information Structures
using Lists
Association Lists

- An association list is a list of pairs.

  ```
  ["January", 31], ["February", 28], ["March", 31], ["April", 30]
  ```

- Typically all first elements of the pairs are of the same type, and all second elements are of the same type.

- The pairs are not necessarily of the same type as each other.
Implementing an Ordered Dictionary

- A **dictionary** is an abstraction associating a value with each member of a set (called the domain).

- An **ordered dictionary** does this while keeping the domain ordered as well.

- A (finite) ordered dictionary can be **implemented** as an association list.
Ordered Dictionary Example

- Implement a dictionary of regular polyhedra as an association list:
 - With each name is associated a pair:
 - \([\text{number-of-faces}, \text{number-of-sides-per-face}]\)
 - \([\{“cube”, [6, 4]\}, \{“dodecahedron”, [12, 5]\}, \{“icosahedron”, [20, 3]\}, \{“octahedron”, [8, 3]\}, \{“tetrahedron”, [4, 3]\}]\)
Using a Dictionary

rex function assoc

- The built-in function assoc behaves as follows:
 - It has two arguments:
 - The first argument is a member of a domain, say D.
 - The second argument is an association list with domain D.
 - The result is the first pair in the association list in which the first element matches the first argument.
 - If there is no match, [] is returned. ([] is not a pair, so the meaning is clear.)
Example using assoc:

// Definition of polyhedra

polyhedra =
 [["cube", [6, 4]],
 ["dodecahedron", [12, 5]],
 ["icosahedron", [20, 3]],
 ["octahedron", [8, 3]],
 ["tetrahedron", [4, 3]]
];

// Expression to be evaluated

assoc("octahedron", polyhedra);

// Expected result:

["octahedron", [8, 3]]
Using the rex builtin 2-ary test function

// Expression to be tested Desired result
test(assoc("octahedron", polyhedra), ["octahedron", [8, 3]]);

Sample session:

turing ~:1> rex polyhedra.rex
ok: assoc("octahedron", [[cube, [6, 4]], [dodecahedron, [12, 5]],
[icosahedron, [20, 3]], [octahedron, [8, 3]],
[tetrahedron, [4, 3]]]) ==> [octahedron, [8, 3]]
polyhedra.rex loaded
1 rex > ^D
Control-D means end-of-input
turing ~:1>

If there were an error, it would be indicated with “bad” instead of “ok” and the error count would be reported at the end.