Finite-State Machines

Implementing Finite-State Machines using Logic+Memory

- When we implemented logic functions, we used only gates and no memory; those are called **combinational** logic circuits.
- To implement a finite-state machine, some kind of **memory** is generally necessary to remember the previous state. These are called **sequential** logic circuits.

Representing a Discrete Sequence in Continuous Time

- From our viewpoint, time appears to be a continuous variable.
- For a digital sequence, we want discrete values \([x_0, x_1, x_2, x_3, \ldots]\), not a continuous function \(x(t)\).
- The typical way to handle this is to use a **clock**.
- The continuous sequence is “sampled” at regularly-spaced times, when the clock “ticks”.

Sampling a Signal

- Time

![Sampling a Signal](image1.png)

- Clock ticks

\[0 \quad 1 \quad 0 \quad 1 \quad 1 \quad 0\]

![Sampling a Signal](image2.png)
Clock Rate

- The clock is analogous to the conductor of a symphony orchestra: it keeps all of the players in sync.
- The rate at which the clock ticks is the quoted rate of the processor, e.g. 500 MHz (500,000,000 ticks per second).
- It is possible to design systems that don’t have clocks (“asynchronous systems”) but these are rare.

The Basic Unit of Memory is the Flip-Flop

- A flip-flop remembers one bit, either a 0 or 1.
- The presence of a synchronizing clock is assumed.
- The bit is held from one clock-tick to the next.
- Each time the clock ticks, whatever value (0 or 1) exists at the flip-flop’s input is remembered; the old value is lost.

Flip-Flop Behavior

Inside a Flip-Flop

- A flip-flop can be constructed from ordinary gates (which have some associated switching delay) and feed-back connections.
- A first approximation, called a clocked latch, is:

Clocked Latch Behavior

Edge-Triggered Flip-Flop

This flip-flop changes only when the clock edge occurs, unlike the latch which can change back and forth during the time the clock is 1.

Analysis is left to the reader.
Encoding An Arbitrary State Set for a Finite-State Machine

- We can encode an arbitrary state set just as we encode any set, in terms of some number of bits.
- When the encoding has been chosen, we need one flip-flop per bit.
- We implement the next-state function using combinational logic: given an encoded version of the current state, produce the encoding of the next state.

Example: Implement a multiples-of-3 machine

Suppose we encode the state set using 2 bits, thus:

The next state is summarized by the following table:

<table>
<thead>
<tr>
<th>next state</th>
<th>input</th>
<th>s</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>00</td>
<td>0</td>
</tr>
<tr>
<td>01</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>01</td>
<td>0</td>
</tr>
</tbody>
</table>

But we already know how to implement such a table in logic!

Logic for Multiple-of-3

<table>
<thead>
<tr>
<th>current state (vw)</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>01</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

next v: \(w \)
next w: \(v \)

next v = wx' + vx
next w = vx' + vw'x
Logic Diagram

\[
\text{next } v = \overline{w}x + vx
\]

\[
\text{next } w = vx + \overline{v}w'x
\]

Output Considerations

- We need to drive the output from the encoded state.
- The output is coded, just like the state and input.
- Let's say that the output is \(z \) which has value 1 for accepting, 0 for rejecting.
- Since the only accepting state is 00, the output function is

\[
z = \overline{v}w'
\]

Reverse Engineering

- We can check our result by “reverse engineering”, that is construct the state diagram from the logic itself.
- From the drawing, we have:
 - next \(v = vx + \overline{w}x' \)
 - next \(w = vx' + \overline{v}w'x \)
 - initial \(v w = 00 \)
 - output \(z = \overline{v}w' \)

Final Circuit, with Output

```
```

Reverse Engineering

- From the drawing, we have:
 - next \(v = vx + \overline{w}x' \)
 - next \(w = vx' + \overline{v}w'x \)
 - initial \(v w = 00 \)
 - output \(z = \overline{v}w' \)

- Construct a diagram with states \(= v w \), starting
 with initial state \(0 0 \):

<table>
<thead>
<tr>
<th>0 0 with input 0</th>
<th>0 0 with input 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 with input 0</td>
<td>0 1 with input 1</td>
</tr>
<tr>
<td>1 0 with input 0</td>
<td>1 0 with input 1</td>
</tr>
</tbody>
</table>
Reverse Engineering

- From the drawing, we have:
 - $\text{next } v = \text{vx} + \text{wx}'$
 - $\text{next } w = \text{vwx}' + \text{vwx}$
 - initial $v = 0$
 - output $z = \text{vw}$
- Construct a diagram with states v, w, starting with initial state $0:0$

<table>
<thead>
<tr>
<th>Input</th>
<th>State 0:0</th>
<th>State 0:1</th>
<th>State 1:0</th>
<th>State 1:1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0:0</td>
<td>0:0</td>
<td>0:0</td>
<td>0:0</td>
</tr>
<tr>
<td>1</td>
<td>0:0</td>
<td>0:1</td>
<td>1:0</td>
<td>1:0</td>
</tr>
</tbody>
</table>

The resulting diagram:

![Diagram](image)

which is what we started with.
- In general, reverse engineering will start from the logic.

Physical Computers

(as distinguished from "virtual" computers, such as Turing machines)

Computer Components

- Finite-state machines
- Combinational logic
- Busses

Register

- A register is a finite-state machine that remembers values as bit vectors.
- A register may perform other functions as well:
 - Clearing
 - Incrementing, decrementing
 - Shifting

Simplest register

![Simplest register](image)

Remembers one bit = Flip-Flop
Inputs to a Register

- Data (e.g., value to be remembered)
- "Strobe": function to be performed
- Simplest register has no strobe inputs

Two-Bit Register

Register with Strobe Input

Register with Two Strobe Inputs

1-bit register with load & clear

Strobe Possibilities

- load
- clear
- increment
- decrement
- complement
- left-shift
- right-shift
Register Transfer

Equivalent Java: \(A = B \);

Selective Register Transfer

Equivalent Java: \(A = P \ ? B : C \);

See also: Boole/Shannon Expansion

4-way selection

Selection Using a Bus

For this to make sense, we need another register output value separate from 0,1.

Implementing Bus Connection

- We can't simply use AND-gates; the output of an AND will always be 0 or 1.
- Connecting together wires with 0 and 1 simultaneously would be fatal.
- For the bus, use a third possible output value:
 - "high impedance", "high Z", or
 - NC (no connection)

3-State Buffer

output = control ? data : NC;

No Connection
Selection using Bus

- Selection using bus

 ![Bus Diagram](image)

 (b, c, d) is one-hot

Bus vs. Multiplexor

- The bus-type connection allows selection from a large number of inputs without requiring a multiplexor tree or other complex logic.

Computing using Combinational Functions

- Computing using combinational functions

 ![Combinational Functions Diagram](image)

 Java: $A = B + C$.

- The actual computation takes place "between" clock ticks.

 The clock simply strobes the result into the register.