Inductive Definitions
Languages, Grammars

Motivation: Parsing
- Parsing is the act of interpreting text as meaningful information.
- Example:
 - Programming language: Parsing interprets the language as an executable program.
 - Calculator: Parsing interprets the symbols to carry out the calculation being represented. $345 + 62.7*84.9$ doesn’t have a “magical” meaning; we have to give it one.

Grammars, and Induction
- Grammars provide a plan for parsing; they define the syntax of a language.
- Grammars are an instance of a more general concept: Inductive Definitions.
- rex rules are often inductive definitions; but grammars may be non-deterministic for a reason.

Inductive Definitions
- Inductive definitions are the main "constructive" way to define infinite sets.
- We will need infinite sets in much of what follows.

Elements of an inductive definition of a set S:
- Basis
- Induction rule(s)
- Extremal clause

Components of an inductive definition of a set S:
- Basis: Defines a few items to be in S.
- Induction rule(s): Introduce new items in S based on existence of other, usually simpler, items.
- Extremal clause: Says that the only items in S are those derivable by the previous two components, applied a finite number of times.
Example of ID: Binary Trees

- It is a binary tree.
- If T_1 and T_2 are binary trees, then so is:

 \[\begin{array}{c}
 T_1 \\
 \text{Tree}
 \end{array} \quad \begin{array}{c}
 T_2 \\
 \text{Tree}
 \end{array} \]

- Extremal clause: The only binary trees are those constructible by a finite number of applications of the above rules.

Examples of Binary Trees

Example of ID: Natural Numbers

- Basis: 0 is in $[]$.
- Induction: If n is in $[]$, so is the successor of n (variously denoted n', $S(n)$, or $n+1$).
- Extremal: The only elements in $[]$ are those derivable by applications of the above rules.
- Examples: 0, $0'$, $0''$, $0'''$, ... are all elements of $[]$.

Notes

- Set $[]$ is an infinite set.
- The members of $[]$ are all finite.
- Set $[]$ does not contain infinity (∞) as an element.

Interpretations of Successor ($'$)

- What are $0'$, $0''$, $0'''$, ... really?
 - Strings of symbols, or
 - Things that can be constructed from sets, a more primitive concept.
 - Two variations:
 - $0'$ is \emptyset, the empty set; X' is the set X.
 - $0'$ is \emptyset, the empty set; X' is the set $X \cup \{X\}$.
 - In the second example: $0' = \emptyset$, $0'' = \{\emptyset\}$, $0''' = \{\emptyset, \{\emptyset\}\}$, ...
 - Advantage: $0'n$ is a set with n distinct members.

Decimal Numerals

- We can agree by convention that
 - 1 stands for $0'$,
 - 2 stands for $0''$,
 - ...
 - 9 stands for $0'''$.
 - Beyond that, give an algorithm for generating additional numerals:
 - 10, 11, 12, 13, ...
Decimal Numbering Rule
- The successor of x_0 (concatenation) is x_1, the successor of x_1 is x_2, \ldots, and the successor of x_8 is x_9.
- The successor of x_9 is y_0 where y is the successor of x.
- Example: $0, 1, \ldots, 9, 10, 11, \ldots, 19, 20, 21, \ldots, 99, 100, \ldots$

1-adic Numerals
- The only digit is 1.
- The empty string (denoted \emptyset so it is readable) stands for 0.
- \mathbf{IX} (I followed by X) stands for X'.
- The numerals are: $\emptyset, 1, 11, 111, 1111, \ldots$
- Could also use lists: $[], [1], [1, 1], [1, 1, 1], \ldots$

2-adic Numerals
- The digits are 1 and 2.
- The empty string (denoted \emptyset so it is visible) stands for 0.
- The numerals are: $\emptyset, 1, 2, 11, 12, 21, 22, 111, 112, \ldots$
- Unlike binary numerals, there is no redundancy ($1, 01, 001, 0001, \ldots$ all mean the same thing in binary).

Roman Numerals
- The digits are I, V, X, L, C, D, M.
- There is no string for 0.
- The successor of I is $s(I) = II$, $s(II) = III$, $s(III) = IV$, etc.

Numerals vs. Numbers
- **Numbers** are abstract.
- **Numerals** are a concrete representation of numbers.

Strings over an alphabet \mathcal{S}
- The set of all finite strings over an alphabet \mathcal{S} is denoted \mathcal{S}^*.
- Example:
 - $(a, b)^* = \{ \emptyset, a, b, aa, ab, ba, bb, aaa, aab, aba, \ldots \}$
Strings over an alphabet Σ

- **Basis:** ϵ, the empty string, is in Σ^*.
- **Inductive rule:** If $x \in \Sigma^*$ and $s \in \Sigma$, then $s \cdot x$ (followed by x) is in Σ^*.
- **Extremal clause.**

Languages

- A language over Σ is any subset of Σ^*, the set of all strings over Σ.
- Examples, where $\Sigma = \{a, b\}$:
 - $(a, b)^*$ itself
 - \emptyset, the empty language
 - (ba, bba), maybe your first language
 - $(\epsilon), aa, aaaa, aaaaa, \ldots)$ the language of an even number of a's.

More Languages

- **Basis:** ab is in L.
- **Inductive rules:**
 - If x is in L, so is axb.
 - If x_1 and x_2 are in L, so is x_1x_2.

Non-Trivial Language Defined Inductively

- $L = \{ab, abab, aabb, aababb, \ldots\} \subseteq \Sigma^*$
- **Basis:** ab is in L.
- **Inductive rules:**
 - If x is in L, so is axb.
 - If x_1 and x_2 are in L, so is x_1x_2.

Languages

- There are lots of languages, some very weird.
- To be of computational interest, a language needs to be defined inductively.
- We need a way of telling whether a given string is in the language or not (called parsing the string).

Grammars: A Shorthand

- Spelling everything out with these inductive definitions is laborious.
- We need a shorthand, especially for more complex languages.
- The idea comes from linguistics and early work on computer languages.
Grammar Definition

- There is a "start symbol", or "root", say S, which is not in the alphabet of the language itself.
- $Æ$ is a symbol meaning "can be rewritten as".
- Grammar rules, for example:
 1. $S Æ ab$
 2. $S Æ aSb$
 3. $S Æ SS$
- Apply rules by "free choice".
- A sequence of applications is called a derivation.
- The strings in the language are those that don’t include S.

Using the Grammar Rules

- Grammar rules:
 1. $S Æ ab$
 2. $S Æ aSb$
 3. $S Æ SS$
- Example derivations of strings in the language:
 1. $S Æ ab$
 2. $S Æ aSb Æ aabb$
 3. $S Æ SS Æ abS Æ abab$
 4. $S Æ SS Æ aSbS Æ aabbS Æ aabbaSb Æ aabbaabb$

Generalizing Grammar Rules

- Instead of just S, allow multiple symbols, called auxiliaries, none of which are in the alphabet of the language.
- A distinguished auxiliary is called the root or "start symbol".
- The symbols in the alphabet of the language are called terminals.
- The rules are known as productions.

Example: Grammar for Additive Arithmetic Expressions

- The root is A.
- The terminals are $\{a, b, c, +\}$.
- The productions are:
 - $A Æ V$
 - $A Æ V + A$
 - $V Æ a$
 - $V Æ b$
 - $V Æ c$

Example Derivations

- The productions are:
 - $V Æ a$
 - $V Æ b$
 - $V Æ c$
 - Group by common left-hand sides
 - Use $|$ (read "or") to represent alternatives:
 - $A Æ V | V + A$
 - $V Æ a | b | c$
 - Note: $|$ "binds more loosely" than other symbols.
 - Same grammar, just a briefer notation.

Shorthands on top of Shorthands

- The productions are:
 - $V Æ a$
 - $V Æ b$
 - $V Æ c$
- Group by common left-hand sides
- Use $|$ (read "or") to represent alternatives:
 - $A Æ V | V + A$
 - $V Æ a | b | c$
 - Note: $|$ "binds more loosely" than other symbols.
 - Same grammar, just a briefer notation.
Derivation Tree Visualization

Terminal string = red “fringe” of tree = “c + a + b”

Syntax Tree (= Derivation Tree)
Shows Implied “Interpretation” of String

Right Grouping (used so far) vs. Left Grouping Productions

Does Grouping Matter?
- Mathematically, + is an associative operator:
 \((a + b) + c == a + (b + c)\)
- However:
 - There are non-associative operators, such as -, where it does matter.
 \((a - b) - c \neq a - (b - c)\)
 - Also, on computers, for floating point addition, associativity does not always hold.

Floating Point is Not Associative

- Try this:
 - `sumup(m, n) = m > n ? 0 : 1.0 + sumup(m+1, n);`
 - `sumdown(m, n) = m > n ? 0 : 1.0 + sumdown(m, n-1);`
 - `test(n) = sumup(1, n) == sumdown(1, n);`
 - `map(test, range(1, 100));`
- Sensitivity to grouping is due to round-off error.

Precedence Issue
(multiple operator symbols)

- How do we ensure that the syntax tree of
 \(a + b \times c\)
looks like this: and not this:
Multiple Auxiliaries

- We want " to "bind more tightly" than +.
- Use a different auxiliary symbol for each level of precedence.
- Arrange it so that expansions from the tighter binding auxiliary symbol can only be done after those of the looser binding auxiliary.

Precedence Issue

- We must ensure that the derivation tree for a+b*c looks like this: and not this:

![Derivation Tree Diagram]

Example: Grammar for Additive & Multiplicative Arithmetic Expressions

- The root is A.
- The terminals are \{a, b, c, +, *\}.
- The productions are:
 - A : M + A | M
 - M : V * M | V
 - V : a | b | c
- Intuitive rule: Operator "farther from the root" binds more tightly

Syntactic Categories

- The various auxiliary symbols typically represent syntactic categories: sets of sub-expressions having a certain type of meaning.
- Categories:
 - A : M + A | M A is a "sum"
 - M : V * M | V M is a "product"
 - V : a | b | c V is a "variable"

Example Derivations

- The productions are:
 - A : M + A | M
 - M : V * M | V
 - V : a | b | c
- Sample derivations (A is the syntactic category):
 1. A : M + V * a
 2. A : M + A | V + A | a + A | a + M | a + V | a + b
 3. A : M + A | V + M | a | V | a + V | M
 4. A : M + A | V + M | a | V | a + V | A
 a + A | a + V | a + V | a + V | a + V | a + V | a + V

Example Syntactic Categories

- The productions are:
 - A : M + A | M
 - M : V * M | V
 - V : a | b | c
- Sample sub-derivations, e.g. from M:
 1. M : V | V | a
 2. M : V * M | a | V | M | a | V | M | a | b | a | V | M | a | b | V | M | a | b | a
 3. M : V | V | M | a | V | M | a | V | M | a | b | V | M | a | b | V | M | a | b | a
- Observation: Derivations from M will never include any +'s.
<table>
<thead>
<tr>
<th>Exercise: Include ^ (power)</th>
<th>How to handle '()'</th>
</tr>
</thead>
<tbody>
<tr>
<td>• ^ binds the most tightly</td>
<td>• Parentheses means</td>
</tr>
<tr>
<td>• * is next</td>
<td>“handle inside as a single unit”</td>
</tr>
<tr>
<td>• + is the weakest</td>
<td>• Parallel level to a single variable</td>
</tr>
<tr>
<td></td>
<td>• Sometimes called “primaries”</td>
</tr>
</tbody>
</table>