Low-Level Functional Programming

What's "Low-Level" About This?

- "low-level" refers to the construction of functions by explicitly creating and decomposing lists a few elements at a time.
- Previously we used higher-order functions to do most of the non-trivial work in a functional decomposition.
- Now we are going to use pattern matching rules, recursion, etc.

Fundamental List Dichotomy

- A list is either:
 - empty, [] or
 - non-empty, in which case it has both a first and rest.
- Most list definitions deal with these cases separately.
- Definitions are typically a form of inductive definition, in which [] is the basis.

List Decomposition Notation

- When a list is non-empty, it has a first element and the rest of the elements form a list.
- The general form of a non-empty list will be represented:
 - \([F | R]\)
 - read "F followed by" R.
- Here F is a variable representing the first element, and R is a variable representing the rest of the elements (R has a list as its value, even though brackets aren't around R).

List Decomposition Example

- Consider a defining equation:
 - \([F | R]\) = [1, 2, 3, 4]
 - F is a variable representing the first element, so: \(F = 1 \)
 - R is a variable representing the rest of the elements, so: \(R = [2, 3, 4] \)

List Decomposition Clarified

- A defining equation:
 - \([F | R]\) = some list
 - can only be valid when the RHS list is non-empty.
- Thus \([F | R]\) = [] can never be a valid equation.
Defining Functions by Rules

- Suppose we want to define a function taking an arbitrary list as an argument.
- It is sufficient to:
 - define the function on the empty list, and
 - define the function on a general non-empty list.

Example

- Define the function `halve_all`, which divides every element in a list by 2.
 - `halve_all([]) => []`;
 - `halve_all([F | R]) => [F/2 | halve_all(R)];`

This can be read:
- "halving all of the empty list is the empty list."
- "halving all of a non-empty list is half of the first element followed by halving all of the rest."

Computation by "Rewriting"

- `halve_all([2, 4, 6]) =>`
- `1 | halve_all([4, 6]) =>`
- `1 | [2 | halve_all([6])]] =>`
- `1 | [2 | [3 | halve_all([])]]] =>`
- `1 | [2 | [3 | []]] ==`
- `1 | [2 | [3]] ==`
- `1 | [2, 3] ==`
- `[1, 2, 3]

Extended Notation for Greater Readability

- The first so-many, rather than just the first, element, can be shown separated by commas:
 - `[a, b, c, d | R]` means a list with at least 4 elements, a, b, c, d, followed by the elements in list R (which could be empty).

- In the extended notation:
 - `halve_all([2, 4, 6]) =>`
 - `1 | halve_all([4, 6]) =>`
 - `1, 2 | halve_all([6]) =>`
 - `1, 2, 3 | halve_all([]) =>`
 - `1, 2, 3

A Way of Remembering

- The combination `| [..]` inside a list "melts away" into `..`
 - If `..` is empty, then it just melts away, period.

Examples:
- `[1 | [2, 3, 4]] => [1, 2, 3, 4]`
- `[1, 2 | [3, 4]] => [1, 2, 3, 4]`
- `[1, 2, 3 | [4]] => [1, 2, 3, 4]`
- `[1, 2, 3, 4 | []] => [1, 2, 3, 4]`

Alternate

- Of course, we could have just used `map` in this particular case:
 - `halve(A) = A/2;`
 - `halve_all(X) = map(halve, X);`

- Use higher order functions such as `map` when possible:
 - resort to lower-order ones when you think you need to.

- Higher-order functions can often tell the story more succinctly.
Define from a low-level:

- map
- reduce

Example

Define the function `member` which tests whether the first argument is an element of the list in the second argument.

```
member(X, [ ]) => 0;
member(X, [F | R]) => 
  (X == F) ? 1 : member(X, R);
```

conditional expression (as in C++, Java)

Alternate

Instead of using a conditional expression, use a third rule with pattern matching:

- `member(X, []) => 0;`
- `member(X, [X | R]) => 1;`
- `member(X, [F | R]) => member(X, R);`

The rule used is always the first (from top to bottom) applicable one.

Rule Matching

Consider evaluating

```
member(3, [1, 2, 3]) => rule 3 is the first that matches
member(3, [2, 3, 4]) => rule 3 is the first that matches
member(3, [3, 4]) => rule 2 is the first that matches
1
```

Using Conditional Guards

Alternatively, can use a conditional guard:

```
member(X, [ ]) => 0;
member(X, [F | R]) => (X == F) ? 1;
```

conditional guard

```
member(X, [F | R]) => member(X, R);
```

The condition is tested after any other matching is applied.

If the condition fails, then subsequent rules are tried.
Defined from a low-level:
- keep
- range

Matching with Two or More List Arguments
- Some functions have more than one list argument.
- Induction might, or might not, use rules that dichotomize both lists.

Example: append

Example: List Equality
First Rule
- Two lists are equal if they both are empty:
 \[\text{equals}([], []) \Rightarrow 1; \]

List Equality:
Second Rule
- Two lists are equal if they are both non-empty and
- the first elements of each are the same, and
- the lists of the rest of the elements of each are equal.

\[\text{equals}([A \mid L], [A \mid M]) \Rightarrow \text{equals}(L, M); \]

List Equality:
Third Rule
- Otherwise, the two lists are not equal:
 \[\text{equals}(X, Y) \Rightarrow 0; \]
Summary of Equality Rules

1. equals([], []) => 1;
2. equals([A | L], [A | M]) => equals(L, M);
3. equals(X, Y) => 0;

Example of List Equality

Revisit our earlier example:

- Are these lists equal:

 [1, 2, 3] vs. [1, 2]?

Try the rules:

- equals([1, 2, 3], [1, 2]) => (rule 2)
- equals([2, 3], [2]) => (rule 2)
- equals([3], []) => (rule 3)
- 0
- i.e. the lists are not equal.

The Merge Pattern

This important pattern arises many times in different applications.

- Construct a function that merges two lists of numbers:
 - The argument lists are already in ascending order.
 - The result is to be in ascending order as well.

Merge Example

merge([3, 6, 7, 9, 13, 15], [2, 5, 8, 16, 20])

=> [2, 3, 5, 6, 7, 8, 9, 13, 15, 16, 20]

Notes:
- merge is built into rex
- There are many similar functions that aren't.

Merge by Induction

- merge([], M) => M;
- merge(L, []) => L;
- merge([A | L], [B | M]) =>
 A < B ?

 [A | merge(L, [B | M])]

 : [B | merge([A | L], M)];

Similar Example

Consider the representation of numbers as lists of prime factors with multiplicity, e.g. 200 represented as [[2, 4], [5, 2]] with factors in increasing order.

- Want to define functions gcd and lcm on this representation:
 - gcd(R, S) = representation of greatest common divisor of R and S
 - lcm(R, S) = representation of least common multiple of R and S
 - gcd([[2, 4], [5, 2]], [[2, 2], [3, 4], [5, 7]]) => ?
Using Auxiliary Functions

- Often the function to be defined is not directly definable in a natural or efficient way using recursion. A helper or auxiliary function may be necessary.
- Example: reverse

Naïve Reverse

- reverse([]) => [];
- reverse([A | L]) => append(reverse(L), [A]):

 This is "naïve" because:
 - It's the first thing that comes to mind.
 - It's very inefficient:
 - The time taken will be proportional to the square of the length of the list.

Use auxiliary to make non-naïve reverse

- reverse(L) = reverse(L, []);
- reverse([], M) => M;
- reverse([A | L], M) => reverse(L, [A | M]);

 Example of function-name overloading.
 - reverse(L, M) "appends M to the reverse of L".
 - reverse(L, []) therefore reverses L.

Mixed Functional Programming Examples

- Use low-level or high-level, whatever fits best
 - Maybe start with low-level, and the use high-level retrospectively
- Radix conversion
 - Tail recursion
- Tree and graph searching (later slides)

Convert Number to Binary

- Example:
 - toBinary(37):
 - \[1, 0, 0, 1, 0, 1\]
 - \[1 \times 32 + 0 \times 16 + 0 \times 8 + 1 \times 4 + 0 \times 2 + 1 \times 1\]
 - \[2^5 + 2^2 + 1\]

 - First try:
 - divide by 2, record remainder, continue with quotient
 - until 0

Convert Numbers to Binary

- Rules:
 - toBinary(0) => [];
 - toBinary(N) => [N%2 | toBinary(N/2)];

 - Any problems with this definition?
Convert Number to Binary

- Another try:
 - toBinary(N) = toBinary2(N, []);
 - toBinary2(0, Acc) => Acc;
 - toBinary2(N, Acc) => toBinary2(N/2, N%2 | Acc);

- Why is this definition better?
- What is still lacking?

Accumulators and Tail Recursion

- From previous slide:
 - toBinary2(0, Acc) => Acc;
 - toBinary2(N, Acc) => toBinary2(N/2, N%2 | Acc);

- Acc is called an "accumulator" argument:
 - It "accumulates" the result until the basic case is reached, the "unloads" it.

- This type of recursion is called "tail recursion":
 - There is no "cleanup" to be done after the recursive call to toBinary2, and therefore no need to "stack" calls.
 - We can effectively "turn over control" to the subordinate call; giving a form of iteration.

Notes:

- Can similarly convert to any given base, by passing the base as an argument.
- Can convert back (from numeral list to number).

Exercise

- Construct fromBinary, e.g.
 - fromBinary([1, 0, 0, 1, 0, 1]) => 37

- Considerations:
 - Do we need an accumulator?
 - Can it be done with tail-recursion?
 - Try it and see.

An Approach

- Write iterative pseudo-code, then construct recursive equivalent.
 - L = ... list to be converted ...
 - Result = 0;
 - while (L != []) {
 - Result = 2*Result + first(L);
 - L = rest(L);
 - ...
 - answer is in Result ..

- Defining fromBinary3(L, Result):
 - fromBinary3([], Result) => Result;
 - fromBinary3([F | R], Result) => fromBinary3(R, 2*Result+F);
 - fromBinary3(L) = fromBinary3(L, 0);

Version with accumulator

<table>
<thead>
<tr>
<th>Version with accumulator</th>
<th>Version without accumulator</th>
</tr>
</thead>
<tbody>
<tr>
<td>toBinary2(37, []) =></td>
<td>toBinary1(37) =></td>
</tr>
<tr>
<td>toBinary2(18, [1]) =></td>
<td>[1</td>
</tr>
<tr>
<td>toBinary2(4, [1, 0, 1]) =></td>
<td>[1, 0, 1</td>
</tr>
<tr>
<td>toBinary2([0, 1, 0, 1]) =></td>
<td>[1, 0, 1, 0</td>
</tr>
<tr>
<td>toBinary2([0, 0, 1, 0, 1]) =></td>
<td>[1, 0, 1, 0, 0</td>
</tr>
<tr>
<td>[1, 0, 1, 0, 0, 1] =></td>
<td>[1, 0, 1, 0, 1] =></td>
</tr>
<tr>
<td>[1, 0, 0, 0, 1] =></td>
<td>[1, 0, 0, 1] =></td>
</tr>
</tbody>
</table>
Exercise

What if the list were least-significant bit first?

Can you do construct the function?

Can you construct a tail-recursive implementation?

Exercises

Compare “obvious” and tail-recursive forms of:

- factorial function (fac(n) = 1*2*3*...*n)
- length function
- sum of a list
- reduce
- reverse

Essential Non-Tail Recursions

Some functions don’t admit a tail-recursive version (unless reverse is used before or after):

- Examples:
 - map, keep, drop
 - append

append Elimination
(aka “appendectomy”)

- When maximum efficiency is desired, uses of append should be avoided.
- It is often possible to get rid of append by defining versions of functions with an extra accumulator argument.
- Example:
 - nodes(Graph) =
 remove_duplicates(append(map(first, Graph),
 map(second, Graph)))
- Show how to avoid append by generalizing map to take an accumulator.

reverse elimination

- Some functions naturally build lists in reverse.
- Rather than immediately reversing the result, consider leaving it as is (in reversed form) and exploiting this fact at a later stage of the function “pipeline”.
- Some functions, such as map, keep, drop, ... work equally well whether or not the data is in reverse order.