Predicate Logic

Proposition logic (discussed previously) deals with propositions (self-contained things that can be true or false). Individuals are not treated as entities.

Predicate logic constructs truth values out of predicates that apply to individuals.

A predicate with all argument individuals specified is like a proposition, in that it has a true or false value.

Example

Suppose knows is a 2-ary predicate.
Then knows(x, y) is true or false for any substitution of individuals for x and y.

- knows("John", "Sally") is true or false
- knows("Sally", "Jane") is true or false
- etc.

Quantifiers

In addition to truth function operators of proposition logic, predicate logic introduces quantifiers for expressing variation over individuals:

- $(\forall x) p(x)$: for all x, $p(x)$
 - universal quantifier
- $(\exists x) p(x)$: for some x, $p(x)$
 - existential quantifier

Order of Quantifiers

- $(\forall x)(\forall y)$ knows(x, y)
 - Everyone knows someone.
- $(\exists x)(\forall y)$ knows(x, y)
 - Someone knows everyone.
- $(\forall x)(\exists y)$ knows(x, y)
 - Someone knows no one.
- $(\exists x)(\exists y)$ knows(x, y) $\land x \neq y$
 - Someone knows someone other than him/herself.

Interpretation of Formulas with Quantifiers

An interpretation of the symbols in a formula assumes a set of individuals over which we are quantifying, called the domain.

- The domain may be finite or infinite.
- An interpretation also assumes a specific predicate for each predicate symbol.
Interpretations Provide Meaning

- A predicate logic formula can be true in some interpretations but not in all.
- Some formulas are true in all interpretations.
- Some are never true.

Fun with Specific Interpretations

- triangle(x) means x is a triangle
- square(x) means x is a square
- circle(x) means x is a circle
- red(x) means x is red, etc.

- above(x, y) means x is above y
- left(x, y) means x is to the left of y

Which are true in the interpretation shown?
- red(3)
- square(2)
- above(2, 1)
- left(3, 1)
- left(3, 3) \land (red(2) \land yellow(3))

Specific Interpretations that quantify over individuals

Which are true in the interpretation shown?
- (\(\forall x\)) (square(x) \land circle(x))
- (\(\forall x, y\)) ((square(x) \land circle(y)) \land above(x, y))
- (\(\forall x\)) ((\(\forall y\)) (square(y) \land circle(x) \land left(x, y)))
- (\(\forall x\)) (left(x, x))
- (\(\forall x\)) square(x) \land (red(x) \land green(x))

Give Formulas that Characterize the Interpretation (without referring to specific individuals)

Give Formulas that Characterize the Interpretation
Give Formulas that Characterize the Interpretation

Formulas Valid for the Interpretation
Natural Numbers

- \((\forall x) ((x = 0) \lor (\exists y) (x = S(y))) \)
- \((\exists x) (S(x) = 0) \)
- \((\forall x, y) S(x) = S(y) \lor x = y \)
- \((p(0) \land (\forall x) (p(x) \to p(S(x)))) \land (\exists x) p(x) \)

Here
- \(S \) represents the successor function \(S(x) = x + 1 \)
- \(0 \) is an "individual" symbol
- \(p \) is any predicate

These form a variant on the Peano axioms (Giuseppe Peano, 1889).

Universally Valid Formulas are true regardless of interpretation

- We always assume the domain is non-empty.
- \((\forall x) p(x) \lor (\exists x) \neg p(x) \)
- \((\forall x) (p(x) \land q(x)) \lor (\exists x) p(x) \lor (\exists x) q(x) \)
- \((\forall x) p(x) \lor (\forall x) q(x) \lor (\exists x) (p(x) \land q(x)) \)
- \((\forall x) (p(x) \lor q(x)) \lor (\exists x) p(x) \lor (\exists x) q(x) \)
- \((\exists x) (p(x) \land q(x)) \lor (\forall x) p(x) \lor (\forall x) q(x) \)
- \((\exists x) p(x) \lor (\exists x) q(x) \lor (\exists x) p(x) \land (\exists x) q(x) \)
- \((\forall x) p(x) \lor (\forall x) q(x) \lor (\exists x) p(x) \land (\exists x) q(x) \)
- \((\forall x) p(x) \land (\exists x) q(x) \)
- not valid: \((\forall x)(\forall y) p(x, y) \lor (\exists x)(\exists y) p(x, y) \)

Uses of Predicate Logic

- Querying databases
- Program specification
- Program verification
- Advanced properties of logic circuits (time dependence, etc.)
- We look at the first three in this course.

Querying Databases

- For now, restrict to "relational" databases
- View each table in database as a relation (= predicate)
- Query the database: Predicate logic expression selects those combinations for which the expression evaluates to true.

Relational Database Example

<table>
<thead>
<tr>
<th>Lives</th>
<th>name</th>
<th>dorm</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>Name</td>
<td>South</td>
</tr>
<tr>
<td>Alice</td>
<td>Name</td>
<td>East</td>
</tr>
<tr>
<td>Toshik</td>
<td>Name</td>
<td>West</td>
</tr>
<tr>
<td>Roy</td>
<td>Name</td>
<td>North</td>
</tr>
<tr>
<td>Albert</td>
<td>Name</td>
<td>South</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Takes</th>
<th>name</th>
<th>dept</th>
<th>number</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>Name</td>
<td>CS</td>
<td>60</td>
</tr>
<tr>
<td>Alice</td>
<td>Name</td>
<td>CS</td>
<td>65</td>
</tr>
<tr>
<td>Toshik</td>
<td>Name</td>
<td>CS</td>
<td>60</td>
</tr>
<tr>
<td>Roy</td>
<td>Name</td>
<td>Math</td>
<td>60</td>
</tr>
<tr>
<td>Albert</td>
<td>Name</td>
<td>Math</td>
<td>60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tutors</th>
<th>name</th>
<th>dept</th>
<th>number</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>Name</td>
<td>CS</td>
<td>60</td>
</tr>
<tr>
<td>Alice</td>
<td>Name</td>
<td>CS</td>
<td>65</td>
</tr>
<tr>
<td>Toshik</td>
<td>Name</td>
<td>CS</td>
<td>60</td>
</tr>
<tr>
<td>Roy</td>
<td>Name</td>
<td>Math</td>
<td>60</td>
</tr>
<tr>
<td>Albert</td>
<td>Name</td>
<td>Math</td>
<td>60</td>
</tr>
</tbody>
</table>

Three relations:

- Lives: names x dorms
- Takes: names x depts x numbers
- Tutors: names x depts x numbers
Relational Database Example

Sample Queries:

Who lives in South dorm?
 x: lives(x, South)

Who lives in East dorm and takes CS 5?
 x: lives(x, East) \(\land \) takes(x, CS, 5)

Who takes a CS course?
 x: \((y) \) takes(x, CS, y)

Predominant Database Languages

- SQL (sometimes pronounced “sequel”)
 - Structured Query Language
 - The standard query language used in most commercial relational database systems (Oracle, Informix, Sybase, etc.)
 - Invented by Don Chamberlin, HMC ’66
- Prolog (sometimes pronounced “prolog”)
 - Programming in Logic
 - A complete programming language
 - Used in AI and rapid prototyping

Prolog Tutorial

- Relations can be expressed in two ways:
 - Enumeration
 - Rules
 - Combinations of both are possible
- Highly case-sensitive
 - Predicates and constants begin with lower-case, unless quoted with single quotes ‘…’
 - Variables begin with upper-case!
 - _ is considered upper-case
 - _ alone does not match others
 - “…” is not used for quoting; it means something else.

Prolog Tutorial

Enumeration of the lives relation in Prolog:
 - lives(john, east).
 - lives(naima, south).
 - lives(alice, west).
 - lives(toshiko, east).
 - lives(roy, north).
 - lives(albert, south).

Enumeration of the tutors relation in Prolog:
 - tutors(john, cs, 5).
 - tutors(naima, cs, 5).
 - tutors(roy, math, 3).
 - tutors(alice, math, 55).
 - tutors(albert, math, 4).

Prolog Tutorial

Typical developmental execution (as opposed to complete application) scenario:

- Knowledge Base (= Database+Rules) is loaded (“consulted”).
- Queries are posed based on loaded database.
Prolog on Turing
(text in red is typed by user)

```
turing ~:1> prolog +l tutors.pl

Quintus Prolog Release 3.2 (Sun 4, SunOS 5.3)
Copyright (C) 1994, Quintus Corporation. All rights reserved.
Licensed to Harvey Mudd College, CS Dept.

?- lives(john, X).
  X = east  % Where does john live?

?- lives(X, east).
  X = john ;  % Who lives in east?
  X = toshiko ;
  no

```

Prolog Rule Syntax

- A clause such as
dlives(john, east).
 is called a unit clause or fact; it refers to one
 piece of information.

- Non-unit clauses typically are in the form of
 reverse implications:
 Consequent :- Antecedent.
 which stand for
 Antecedent implies Consequent.

Consequent :- Antecedent.

- Can be read as any of the following:
 Antecedent implies Consequent
 Consequent is implied by Antecedent
 Consequent if Antecedent
 Consequent provided Antecedent
- These are called the logical interpretation
 of a clause (as distinguished from
 procedural interpretation).

Non-Unit Clause Examples

```
livesInEast(X) :- lives(X, east).

```
Multiple Clauses for One Predicate

Expressing two different ways for X to know Y:

\[
\begin{align*}
\text{knows}(X, Y) & : - \\
& \text{lives}(X, Z), \\
& \text{lives}(Y, Z).
\end{align*}
\]

\[
\begin{align*}
\text{knows}(X, Y) & : - \\
& \text{takes}(X, \text{Dept}, \text{Number}), \\
& \text{tutors}(Y, \text{Dept}, \text{Number}).
\end{align*}
\]

Logic of Passing an Exam

- There are two ways for a person X to pass an exam:
 - X is adequately prepared, or
 - the exam is extremely easy

\[
\begin{align*}
\text{pass Exam}(X) & : - \text{prepared for exam}(X).
\end{align*}
\]

Preparing for an Exam (1)

- There are three ways for X to be prepared:
 - X knows it all

\[
\begin{align*}
\text{prepared for exam}(X) & : - \\
& \text{knows it all}(X).
\end{align*}
\]

Preparing for an Exam (2)

- X read the book, attended classes (without sleeping), and worked the problems:

\[
\begin{align*}
\text{prepared for exam}(X) & : - \\
& \text{read book}(X), \\
& \text{attended lectures}(X), \\
& \text{\neg slept during lectures}(X), \\
& \text{worked problems}(X).
\end{align*}
\]

Note: \text{\neg} is Prolog’s version of not.

Preparing for an Exam (3)

- X was tutored by Y, who was prepared for the exam:

\[
\begin{align*}
\text{prepared for exam}(X) & : - \\
& \text{tutored by}(X, Y), \\
& \text{prepared for exam}(Y).
\end{align*}
\]

Who passes the exam?

- person(mary).
- person(john).
- person(tom).
- person(sally).
- person(fred).
- attended lectures(fred).
- attended lectures(mary).
- slept during lectures(fred).
- knows it all(tom).
- tutored by(john, mary).
- tutored by(sally, john).
- read book(fred).
- read book(mary).
- worked problems(fred).
- worked problems(mary).
Simulating a Logic Circuit

% an example logic circuit

simulate(A, B, C, D) :-
 and(A, B, D),
 and(A, C, D),
 and(B, C, D),
 assert(X, Y),
 assert(Z, W).

% definitions of logic elements

and(X, Y, Z),
and(X, Z, Y),
and(Y, X, Z),
and(Y, Z, X),
and(Z, X, Y),
and(Z, Y, X).

Goal-Oriented (Procedural) Interpretation of Prolog

- The execution of Prolog is actually a form of depth-first search.
- A Prolog query is composed of a list of goals (the individual predicate expressions).
- Prolog tries to solve these goals by finding individuals that satisfy the predicates, as determined by the knowledge base.
- During the solving process, a goal is replaced by other goals, according to the rules, until there are no unsolved goals left.

Previous Example Prolog KB

canTutor(X, Y).
tutors(X, Dept, Number),
takes(Y, Dept, Number).

% X lives(D) means that person named X lives in dorm D

lives(john, east).
lives(naima, south).
lives(alice, west).
lives(toshiko, east).
lives(roy, north).
lives(albert, south).

% takes(N, D, C) means that person named N takes course C in department D

takes(john, cs, 60).
takes(naima, cs, 60).
takes(alice, cs, 60).
takes(toshiko, cs, 5).
takes(albert, cs, 5).
takes(roy, math, 55).
takes(naima, math, 55).
takes(alice, math, 70).
takes(toshiko, math, 80).
takes(albert, math, 55).

canTutor(alice, Y).

tutors(alice, Dept, Number),
takes(Y, Dept, Number).

% X tutors(D, C, Number) means that person named X tutors course C in department D

tutors(john, cs, 5).
tutors(naima, cs, 5).
tutors(roy, math, 3).
tutors(albert, math, 4).

canTutor(alice, Y).

tutors(alice, Dept, Number),
takes(Y, Dept, Number).

canTutor(X, Y) :-
tutors(X, Dept, Number),
takes(Y, Dept, Number).

canTutor(alice, Y).

tutors(alice, Dept, Number),
takes(Y, Dept, Number).

canTutor(X, Y) :-
tutors(X, Dept, Number),
takes(Y, Dept, Number).

tutors(alice, math, 55).
takes(Y, math, 55).
Goal Succession: Depth-First Execution in Prolog: Result 1a

canTutor(alice, Y).

canTutor(X, Y):-
tutors(X, Dept, Number),
takes(Y, Dept, Number).

tutors(alice, math, 55),
takes(Y, math, 55).

Y = roy

(undo, former binding)

(try for another result)

Goal Succession: Undoing Binding on Failure

canTutor(alice, Y).

canTutor(X, Y):-
tutors(X, Dept, Number),
takes(Y, Dept, Number).

tutors(alice, math, 55),
takes(Y, math, 55).

Y = roy

(undo, former binding)

(try for another result)

Goal Succession: Retrying

canTutor(alice, Y).

canTutor(X, Y):-
tutors(X, Dept, Number),
takes(Y, Dept, Number).

tutors(alice, math, 55),
takes(Y, math, 55).

Y = roy

(undo, former binding)

(try for another result)

Goal Succession: Rebinding: Result 1b

canTutor(alice, Y).

canTutor(X, Y):-
tutors(X, Dept, Number),
takes(Y, Dept, Number).

tutors(alice, math, 55),
takes(Y, math, 55).

Y = naima

(undo, former binding)

(try for another result)

Backtracking in Depth-First Search

Deeper Backtracking: Query 2, Result 2a

canTutor(X, Y).

canTutor(X, Y):-
tutors(X, Dept, Number),
takes(Y, Dept, Number).

tutors(john, cs, 5),
takes(yoshiko, cs, 5).

X = john

Y = yoshiko

(undo, former binding)

(try for another result)

Deeper Backtracking

canTutor(X, Y).

canTutor(X, Y):-
tutors(X, Dept, Number),
takes(Y, Dept, Number).

tutors(naima, cs, 5),
takes(yoshiko, cs, 5).

X = naima

Y = yoshiko

(undo, former binding)

(try for another result)

Goal Succession: Depth-First Execution in Prolog: Result 1a

canTutor(alice, Y).

canTutor(X, Y):-
tutors(X, Dept, Number),
takes(Y, Dept, Number).

tutors(alice, math, 55),
takes(Y, math, 55).

Y = roy

(undo, former binding)

(try for another result)

Goal Succession: Undoing Binding on Failure

canTutor(alice, Y).

canTutor(X, Y):-
tutors(X, Dept, Number),
takes(Y, Dept, Number).

tutors(alice, math, 55),
takes(Y, math, 55).

Y = roy

(undo, former binding)

(try for another result)

Goal Succession: Retrying

canTutor(alice, Y).

canTutor(X, Y):-
tutors(X, Dept, Number),
takes(Y, Dept, Number).

tutors(alice, math, 55),
takes(Y, math, 55).

Y = roy

(undo, former binding)

(try for another result)

Goal Succession: Rebinding: Result 1b

canTutor(alice, Y).

canTutor(X, Y):-
tutors(X, Dept, Number),
takes(Y, Dept, Number).

tutors(alice, math, 55),
takes(Y, math, 55).

Y = naima

(undo, former binding)

(try for another result)

Backtracking in Depth-First Search

Deeper Backtracking: Query 2, Result 2a

canTutor(X, Y).

canTutor(X, Y):-
tutors(X, Dept, Number),
takes(Y, Dept, Number).

tutors(john, cs, 5),
takes(yoshiko, cs, 5).

X = john

Y = yoshiko

(undo, former binding)

(try for another result)

Deeper Backtracking

canTutor(X, Y).

canTutor(X, Y):-
tutors(X, Dept, Number),
takes(Y, Dept, Number).

tutors(naima, cs, 5),
takes(yoshiko, cs, 5).

X = naima

Y = yoshiko

(undo, former binding)

(try for another result)
Deeper Backtracking

canTutor(X, Y).

tutors(X, Dept, Number), takes(Y, Dept, Number).

tutors(roy, math, 3).
takes(Y, math, 3).

fails X = roy Dept = math Number = 3.

Deeper Backtracking

canTutor(X, Y).

tutors(X, Dept, Number), takes(Y, Dept, Number).

tutors(alice, math, 55).
takes(Y, math, 55).

fails X = alice Dept = math Number = 55.

etc.

Summary of Backtracking

- Given a goal, Prolog tries rules in order of occurrence ("top-to-bottom"), using the first rule, the consequent of which matches the goal.
- If the rule has sub-goals, the sub-goals are satisfied in order of occurrence ("left-to-right"), resulting in bindings at each stage.
- If a goal sub-goal fails completely, Prolog retries to satisfy it using the next available option (e.g. the next rule).

Rule and Sub-Goal Ordering

Suppose the goal is knows(john, Y, R).

This rule is tried first:

\[
\text{knows}(X, Y, \text{living}) : - \\
\text{lives}(X, Z), \\
\text{lives}(Y, Z).
\]

This sub-goal is satisfied first, which binds Z.

This rule is tried after the first rule is exhausted:

\[
\text{knows}(X, Y, \text{tutoring}) : - \\
\text{canTutor}(Y, X).
\]

This sub-goal is satisfied next.

In effect, we have disjunction (or) among rules, and conjunction (and) within rules. Remember that Prolog execution is depth-first search.

And-Or Trees

- In AI, problem-solving trees are typically "And-Or" trees.
- This applies to Prolog’s goals.

"Logical Variables" in Prolog

- A variable in Prolog is like an object that can have one of two states:
 - unbound
 - bound, to some Prolog term, e.g. an individual

- Once the variable is bound, it only gets re-bound in backtracking, which results in removing the former binding first.
Lists in Prolog

- The Rex list notation was derived from Prolog's list notation; the two are pretty much the same.
- A list can contain logical variables, which are already bound, or may get bound later.
- The process of binding is known as unification (which means "make the same").

Unification (1)

- Unification causes two logical variables to denote the same thing.
- The symbol for unification in Prolog is =.
- Examples:
 - X = a Variable unified with constant
 - X = [a, b, c] Variable unified with a list
 - [X, b, c] = [a | Y] X = a, Y = [b, c]
 - [X, b] = [a, c] — NOT UNIFIABLE

Unification (2)

- Unification takes place implicitly when a rule is used for a goal:
 - knows(john, U, R).
 - X = john
 - Y = U
 - R = living
 - knows(X, Y, living) :- lives(X, Z), lives(Y, Z).
- The rule is usable iff the goal and the rule consequent variables unify.

Special handling of _ in Prolog

- The variable _ is special.
- It is called a "throw-away" or "don't care" variable.
- _ unifies with anything, but different instances of _ within the same clause are not unified, unlike other variables.

Other variables beginning with _

- A variable that occurs only once in a clause is called a "singleton variable".
- Often singleton variables are the result of a typing error, and certain compilers will warn about them.
- To prevent the warning, when this is the intention, use a variable that begins with _, such as _Name rather than Name.

== in Prolog is not unification

- == is literal equality
- a == a succeeds
- a == b fails
- X == a fails if X is unbound (unlike =)
- X = a, X == a succeeds (X becomes bound)
- X == Y fails if either is unbound
\(\neq\) in Prolog is literal inequality

- \(a \neq a\) fails
- \(a \neq b\) succeeds
- \(X \neq Y\) succeeds if either is unbound
- There is no \(\neq\) (not-unifiable) operator.
- Instead use \(\neq\) \(X = Y\) (it is not the case that \(X = Y\)).

The \(\textit{is}\) operator in Prolog

- Unlike a functional language, expressions that look like arithmetic are not automatically evaluated.
- Example: \(X - 1\) is kept as its syntax tree (\(\langle X, 1\rangle\)).
- The \(\textit{is}\) operator is used to force evaluation.
- Example: \(Y\) is \(X\)-1 means: unify \(Y\) with the arithmetic value of \(X\)-1.
- All variables in the right-hand side must be bound \textit{before} evaluation.

The \(\textit{is}\) operator in Prolog

- \(Y = 5, X = Y + 3\).
 \% \(X = 5 + 3\) (without evaluation)
- \(X = Y + 3\).
 \% \(X = Y + 3\)
- \(Y = 5, X = Y + 3\).
 \% \(X = 8\)
- \(X\) is \(Y + 3\).
 \% is an error; \(Y\) is unbound

Other arithmetic operators that force evaluation (of both sides)

- \(<\) e.g. \(2+3 < 5+1\)
- \(\geq\)
 \(\langle\) (not \(\geq\), which "looks like an arrow")
- \(\geq\)
 \(\rangle\) (not \(\geq\), which "looks like an arrow")
- \(\neq\)
 e.g. \(3+2 \neq 5+1\)
- \(\neq\)
 e.g. \(3+2 \neq 4+1\)

Other comparison operators

- \(\langle\langle\) compare arbitrary terms (e.g. lists)
- \(\rangle\rangle\) in lexicographic order
- \(\langle\rangle\)
- \(\rangle\rangle\)

Example: Towers of Hanoi

- Move only one disk at a time.
- Never place a larger disk on a smaller one.
Solving Towers of Hanoi

- Some approaches:
 - Pre-programmed solution
 - Recursive solution is easy in most languages
 - Let Prolog find solution using depth-first search
 - Trickier, but shows off Prolog's capabilities
 - May not find shortest solution
 - Program breadth-first search in Prolog
 - Still trickier

Pre-Programmed Towers of Hanoi (1)

- To move N disks from stack \textit{From} to stack \textit{To}:

Pre-Programmed Towers of Hanoi (2)

- To move N disks from stack \textit{From} to stack \textit{To}:
 - Move N-1 disks from stack \textit{From} to stack \textit{Other} (the stack other than \textit{From} and \textit{To})

Pre-Programmed Towers of Hanoi (3)

- To move N disks from stack \textit{From} to stack \textit{To}:
 - Move N-1 disks from stack \textit{From} to stack \textit{Other} (the stack other than \textit{From} and \textit{To})
 - Move 1 disk from stack \textit{From} to stack \textit{To}

Pre-Programmed Towers of Hanoi (4)

- To move N disks from stack \textit{From} to stack \textit{To}:
 - Move N-1 disks from stack \textit{From} to stack \textit{Other} (the stack other than \textit{From} and \textit{To})
 - Move 1 disk from stack \textit{From} to stack \textit{To}
 - Move N-1 disks from stack \textit{Other} to stack \textit{To}

Data Representation

- Number the disks 1, 2, 3, \ldots smallest to largest.
- Use numeric value to detect size constraint.
% towers(N, From, To, Moves) means that Moves is the list of % moves to move N disks from stack From to stack To
towers(N, From, To, Moves) :-
towers(N, From, To, [], ReversedMoves),
reverse(ReversedMoves, Moves).
% towers(N, From, To, Acc, Moves) means that Moves is the reverse of the list % of moves to move N disks from stack From to stack To, with % Acc being the reverse of the accumulated moves going in (to avoid appending).
towers(0, __, __, Acc, Acc).
towers(N, From, To, Acc, Moves) :-
other(From, To, Other),
N1 is N - 1,
towers(N1, From, Other, Acc, Moves1),
towers(N1, Other, To, [[From, To] | Moves1], Moves).
other(1, 2, 3).
other(1, 3, 2).
other(2, 1, 3).
other(2, 3, 1).
other(3, 1, 2).
other(3, 2, 1).

% Pre-Programmed Towers of Hanoi(5)

Pre-Programmed Towers of Hanoi(5)
- towers(N, From, To, Moves) means that Moves is the list of
 moves to move N disks from stack From to stack To
- towers(N, From, To, [], ReversedMoves),
 reverse(ReversedMoves, Moves)

Pre-Programmed Towers of Hanoi(5)
- towers(N, From, To, Acc, Moves) means that Moves is the reverse of the list
 of moves to move N disks from stack From to stack To, with
 Acc being the reverse of the accumulated moves going in (to avoid appending).
- towers(N, From, To, Acc, Moves).

% Depth-First Towers of Hanoi(1)

Depth-First Towers of Hanoi(1)
- Does not require a human to solve the puzzle first
- First characterize the possible moves.
 - This is a move from stack 1 to stack 2:
 - from / to
 - stack 1 before
 - stack 2 after
 - move([1, 2], [[F1 | R1], S2, S3], [R1, [F1 | S2], S3]) :- ok(F1, S2).
 provided that it is ok to move disk F1 onto stack S2

% Depth-First Towers of Hanoi(2)

Depth-First Towers of Hanoi(2)
- All the possible moves in six rules:
 - move([1, 2], [[F1 | R1], S2, S3], [R1, [F1 | S2], S3]) :- ok(F1, S2).
 - move([1, 3], [[F1 | R1], S2, S3], [R1, S2, [F1 | S3]]) :- ok(F1, S3).
 - move([2, 1], [S1, [F2 | R2], S3], [[F2 | S1], R2, S3]) :- ok(F2, S1).
 - move([2, 3], [S1, [F2 | R2], S3], [S1, R2, [F2 | S3]]) :- ok(F2, S3).
 - move([3, 1], [S1, S2, [F3 | R3]], [[F3 | S1], S2, R3]) :- ok(F3, S1).
 - move([3, 2], [S1, S2, [F3 | R3]], [S1, S3, [F3 | S2]]) :- ok(F3, S2).

% Depth-First Towers of Hanoi(3)

Depth-First Towers of Hanoi(3)
- When is it ok to move a disk onto a stack?
 - Assume the disks are represented by numbers 1, 2, 3, ...
 - with smaller numbers representing smaller disks.
 - ok(_, []). empty target stack
 - ok(A, [B | _]) :- smaller(A, B).
 - smaller(A, B) :- A < B.

% Depth-First Towers of Hanoi(4)

Depth-First Towers of Hanoi(4)
- towers([S1, S2, S3], Moves) will mean that Moves is a valid move sequence
 that results in S1 and S2 being empty (so all disks are on S3).
- towers([S1, S2, S3], Seen, Moves) means the same, except that Seen
 will be a list of all previous states (to prevent infinite looping).
- towers(InitialState, Moves) :- towers(InitialState, [], Moves).
- towers([], [], .., []), % final state, no more moves
- towers(Before, Seen, [Move | Moves]) :-
 nonMember(Before, Seen),
 only consider if Before not already seen
 move(Move, Before, After),
 towers(After, [Before | Seen], Moves).
 only consider if Before not already seen
 move(Move, Before, After),
 towers(After, [Before | Seen], Moves),
 recurse
Depth-First Towers of Hanoi (5)

Auxiliary Predicates:

nonMember(X, L) :- \+ member(X, L).

member(X, [X | _]).

member(X, [_ | L]) :- member(X, L).

Exercise

Reverse the pegs by moving peg "forward" or jumping forward over a peg of either color.

Work out a depth-first solution in Prolog.
(You don't have to check for cycles, because there can't be any.)

Bi-Directional Execution (1)

Consider:

member(X, [X | _]).

member(X, [_ | L]) :- member(X, L).

This predicate can be viewed as a member test.

It can also be viewed as a member generator.

Bi-Directional Execution (2)

test

\- member(3, [1, 2, 3, 4, 5]).

yes

\- member(6, [1, 2, 3, 4, 5]).

no

Generating with append

append([], M, M).

append([A | L], M, [A | N]) :- append(L, M, N).

functional

\?- append([1, 2, 3], [4, 5], Z).

Z = [1,2,3,4,5] ;

no

relational

\?- append(X, Y, [1, 2, 3, 4, 5]).

X = [],

Y = [1,2,3,4,5] ;

X = [1],

Y = [2,3,4,5] ;

X = [1,2],

Y = [3,4,5] ;

X = [1,2,3,4,5],

Y = [] ; // abridged

no

Generator/Test Example: Map Coloring

A map
Map Coloring (2)

A map

A B C D E F G

Corresponding graph

A B C D E F G

Map Coloring (3)

Prolog Clause

map([A, B, C, D, E, F, G]): -
 next(A, B),
 next(A, C),
 next(A, D),
 next(A, E),
 next(B, D),
 next(B, F),
 next(C, D),
 next(C, E),
 next(C, F),
 next(D, F),
 next(E, F),
 next(F, G).

Map Coloring (4):

Color Constraints

next(X, Y) :- color(X), color(Y), X \== Y.

color(red).

color(blue).

... means individuals are not equal

These and the preceding clause are the entire program.

"Zebra" problem (2 of 2)

8. Milk is drunk in the middle house.
9. The Norwegian lives in the first house on the left.
10. The man who drives a Saab lives in the house next to the man with the fox.
11. The Masserati is driven by the man in the house next to the house where the horse is kept.
12. The Honda driver drinks orange juice.
14. The Norwegian lives next to the blue house.

The problem is: Who owns the Zebra? Who drinks water?

A Prolog Solution to "Zebra"

left_right(R,L,[L,R,...]) :-
 left_right(R,L,R,R),
 left_right(R,R,L,R).

next_to(X,Y,L) :-
 left_right(X,Y,L),
 next_to(X,Y,L) :-
 left_right(Y,X,L).

zebra(S) :-
 S = [[norwegian,...],[...],milk,...],
 next_to([norwegian,...],[blue,...],S),
 member([green,...,coffee],S),
 member([red,englishman],S),
 member([ukrainian,tea],S),
 member([yellow,masserati],S),
 member([hondao,orange_juice],S),
 member([japanese,jaguar],S),
 member([spaniard,fox],S),
 next_to([masserati,...],[horse],S),
 member([porsche,snails],S),
 next_to([saab,...],[fox],S).
Builtin Arithmetic Not Reversible

- Consider a clause
 \[p(X, Y) :- Y = X + 1. \]
- A possible use of this clause is:
 \[\left\{ ?- p(5, Z) \right\}. \]
- This clause cannot be used in reverse because the predicate is not reversible:
 \[\left\{ ?- p(X, 6) \right\}. \]
 will not give \(X = 5 \); it will fail.

Non-deterministic Programming

- One interpretation of "non-deterministic":
 - Find all solutions by finding one solution.
 - Solutions can here be for the overall problem or a sub-problem.

Example of ND Programming

- `member(X, [X | _])`.
- `member(X, [_ | L]) :- member(X, L)`.
 - We think about this as generating or checking a solution.
 - We can use it to generate all solutions.

Some Reversible Arithmetic can be Simulated with Lists

- Number \(N \) is represented as a list of \(N \) 1's:
 \[
 \begin{align*}
 \text{sum}([], Y, Y), \\
 \text{sum}([1 | X], Y, [1 | Z]) :- \text{sum}(X, Y, Z).
 \end{align*}
 \]
- The following doesn't quite work for all inverses. A problem arises in factoring 0:
 \[
 \begin{align*}
 \text{prod}([], Y, []), \\
 \text{prod}([1 | X], Y, Z) :- \text{prod}(X, Y, Z1), \text{sum}(Z1, Y, Z).
 \end{align*}
 \]

Example of ND Programming

- `permutation(X, Y)` is true if list \(Y \) is a permutation of list \(X \).
- An attempt:
 `permutation(X, Y) :- sort(X, Z), sort(Y, Z).`
 - This is logical, but doesn't work; the built-in sort is uni-directional.

Permutation

- `permutation([], [])`.
- `permutation(L, [A | M]) :- member(A, L, Residue), permutation(Residue, M)`. general
- `member(A, [A | X], X)`.
- `member(A, [B | X], [B | Y]) :- member(A, X, Y)`.
slowsort (joke)

% slowsort(X, Y) is true when Y is a sorted permutation of X.
slowsort(X, Y) :- permutation(X, Y), sorted(Y).
% sorted(Y) is true when Y is a list of elements in non-decreasing order
sorted([]).
sorted([_]).
sorted([A, B | X]) :- A @=< B, sorted([B | X]).

N-Queens Problem (NDP)

- Two queens on a chessboard are “attacking” if they are in a common row, column, or diagonal.
- Given a board size N, find a solution (or all solutions) for placing N queens so that no two are attacking.

Example, N = 4

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

State representation:
[[1, 3], [2, 1], [3, 4], [4, 2]]

Solving Queens

- Given a list of columns and unoccupied rows:
 If columns is empty, succeed.
 For the first column:
 If there is a row where the queen is not being attacked, place it and recurse.
 If no such row, fail (backtrack).

Queens (1/3)

queens(N, S) :-
 range(1, N, Range),
 solve(Range, Range, [], Solution),
 reverse(Solution, S).

% solve(Rows, Cols, Acc, Solution)
solve([], _, Acc, Acc).
solve([Col | Cols], Rows, Acc, Sol) :-
 member(Row, Rows, Residue),
 noAttack([Col, Row],Pairs),
 solve(Cols, Residue, [[Col, Row] | Acc], Sol).

Queens (2/3)

% noAttack([Col, Row], Pairs) succeeds if pair [Col, Row] does not attack the other Pairs, assuming the other Pairs don’t attack each other.
noAttack([], []).
noAttack([Col1, Row1], [[Col2, Row2] | Pairs]) :-
 Col1 \= Col2,
 Row1 \= Row2,
 abs(Col1-Col2) \= abs(Row1-Row2),
 noAttack([Col1, Row1], Pairs).
member(A, [A | X], X).

member(A, [B | X], [B | Y]) :- member(A, X, Y).

range(M, N, []).

range(M, N, [M | L]) :- M < N, M1 is M+1, range(M1, N, L).

reverse([], M, M).

reverse([A | L], M, R) :- reverse(L, [A | M], R).

Prolog’s Origins
(see http://max.cs.kzoo.edu/~acarra/prolog.html)

- Prolog was invented at the University of Montreal around 1970 by Alain Colmerauer, who since has been professor at the École Supérieure d’Ingénieurs de Luminy in Marseille, France.

- The original work was a grammar-based language for natural language translation.

Prolog Perspective

- A complete programming language

- Not a complete logic language
 - Restricted to “Horn Clauses”
 - Restricted form of negation
 - Quantifiers not completely general
 - Built-in arithmetic not completely general
 - More powerful logic systems exist, e.g.
 - Otter (see CS 80 or 151)

Contemporary Extensions of Prolog

- Constraint logic programming
- Inductive logic programming
- Lambda-prolog
- Goedel
- Parallel prologs
- Prolog++
- ... (The list is quite long.)