Searching Trees & Graphs

Tree-Dichotomy for Recursion

- We often want a different induction/recursion dichotomy for trees than for lists (empty vs. non-empty):
 - The tree is a single node (and is thus a leaf).
 - The tree is a node with offspring (and is thus not a leaf).

Model Independence

- We can abstract away the specific representation being used:
 - isLeaf(T) = 1 when T is leaf, 0 otherwise.
 - offspring(T) = the list of offspring of a non-leaf, undefined otherwise.
 - The implementation depends on which tree model we are using.

Example Implementations

- Labeled-Tree Implementation:
 - makeTree(Root,ListOfSubTrees) = [Root | ListOfSubTrees];
 - isLeaf(T) = rest(T) == [];
 - getOffspring(T) = rest(T);
 - getRoot(T) = first(T);

Recursion on Trees

- Basis: What happens on a single leaf.

Example: Height of a Tree

- The height of a tree is the length of the longest path from the root.
 - height(T) = isLeaf(T) ? 0:
 - height(T) = 1 + sum(map(height, getOffspring(T)));
- Let recursion do the work for you.
Searching a Labeled Tree

Suppose we want to find all nodes with labels having a property P.

```plaintext
findInTree$(P, T) =$
Root = getRoot$(T)$,$
foundInRest = mappend(\{S\} \rightarrow findInTree$(P, S), getOffspring$(T)$),
P(Root) \? (Root \& foundInRest) : foundInRest;
```

Depth-First Search

The preceding expresses only one form of search: depth-first search.

The pattern is to search "deeper" before "broader".

Depth- vs. Breadth-First

Example: Find evens

Breadth-First: Wavefront Analogy

Advantage of Breadth-First
Breadth-First Searching a Labeled Tree

- Easier if we generalize to search a forest:
- \(\text{findInTreeBF}(P, T) = \text{findInForest}(P, [T]) \):
- \(\text{findInForest}(P, []) \rightarrow [] \):
- \(\text{findInForest}(P, [Tree | Trees]) \rightarrow \)
 \(\text{Root} = \text{root}(Tree) \)
 \(\text{foundInRest} = \text{findInForest}(P, append(Trees, getOffspring(Tree))) \)
 \(P(\text{Root}) \oplus [\text{Root} | \text{foundInRest}] : \text{foundInRest} \)

Searching Graphs vs. Trees

- Basic ideas still apply, but
 - In graph, avoid re-searching same nodes due to fan-in
 - In graph, avoid infinite loops.
 - How?

Depth- vs. Breadth-First in Graph

Example: Find evens

Searching Without Recursion

- Depth-First: Use Stack
- Breadth-First: Use Queue
- Avoid Fan-in and Cycles:
 - "Mark" nodes as encountered
 - Refuse to re-search from a marked node
 - Marking can be metaphoric, e.g. by membership on a list, or
 - The node itself can be marked (non-functional programming).

Searching a Maze

- A maze is an implicit graph
- Nodes are identifiable by position
- The arcs are implicit, determined by adjacent spatial positions.
- Marking can be done in a "parallel array"

Recovering Path

- Searching for the first element satisfying some property.
- Want not just the element, but the path from the starting point to the element.
- How to accomplish?
Lineage and Back Pointers

- Non-root nodes are encountered from a parent node.
- When a node is encountered, could keep a record of the parent.
- Keep a list of nodes during descent is one means.
- Setting a "back pointer" to the parent is another; could use an association list of [child, parent] for example.

Two Birds with ...

- If we use back-pointers to remember parents, we don’t also need marking:
 - A node with a known parent is implicitly marked.
 - A node without a known parent is not marked.

Non-functional Back-Pointers

- When not restricted to functional programming techniques only, can use destructive setting of back-pointers for greater efficiency.