Trees and their Implementation as Lists
The Tree is a Pervasive Information Structure

- Files & Directories
- Family Trees
- Management Hierarchies
- Decision Trees
- Image Trees

In the current discussion:
- Trees are the abstraction
- Lists will be the implementation
Maybe Mondrian Knew
Files and Directory Trees

```
/ 
  /dev 
    /dev/console 
    /dev/dsk 
      /dev/dsk/dsk01 
      /dev/dsk/dsk02 
  /etc 
    /etc/mail 
  /usr 
    /usr/bin/emacs 
    /usr/bin/ls 
    /usr/bin/more 
```

root directory
Organization Chart
(Management Hierarchy)
Decision Trees

Admissions Decision Tree
Wotsamatta U.

- SAT above 1590?
 - no
 - yes
 - Star athlete?
 - no
 - yes
 - Child of alumnus?
 - no
 - yes
 - go figure
 - of a wealthy alumnus?
 - no
 - yes

REJECT
ADMIT
Image Trees

Quad Tree: 2 dimensions

Octree: 3 dimensions

Definition of Tree

- There are many different varieties of trees.
- We can present only some of them.
- Use your knowledge of these to generalize to other varieties.
- We will base our definition on paths and related concepts.
Terminology for Trees: Paths in Directed Graphs

- A path in a graph G is a list of nodes n_0, n_1, \ldots, n_k such that each successive pair (n_i, n_{i+1}) is in the corresponding binary relation.

Some paths:
- a, b, d
- c, e, a
- a, c, e, a, c, d
Cycles

- A cycle is a path that starts and ends on the same node.

- Examples:
 - a, c, e, a
 - e, a, c, e, a, c, e
Cyclic and Acyclic

- A **cyclic** graph is one that has at least one cycle.
- An **acyclic** graph is one that has **no** cycles.

![Cyclic Graph](image1)

![Acyclic Graph](image2)
DAGs

- DAG is an acronym for "Directed Acyclic Graph"

- "DAG" is mainly used because it is more pronounceable than ADG ("Acyclic Directed Graph")
Target Set

- The **target set** of a node n is the set of nodes to which there is an arc from n.

 - $\text{targets}(a) = \{b, c\}$
 - $\text{targets}(b) = \{d\}$
 - $\text{targets}(c) = \{d, e\}$
 - $\text{targets}(d) = \{\}\}$
 - $\text{targets}(e) = \{a\}$
Leaves

- If a node’s target set is empty, that node is called a *leaf*.
Fan-In

- A directed graph is said to **fan-in at** node \(n \) if the node is in the target sets of two or more different nodes.
- A directed graph "**has fan-in**" if it fans in at least one node.
A root of a directed graph is a node that is not in any node’s target set.
Tree at Last

- A *tree* is a directed graph such that:
 - The graph is acyclic.
 - There is exactly one root.
 - It has no fan-in.
Tree vs Not

A tree:

```
A  
<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>d</td>
</tr>
</tbody>
</table>
```

```
A  
<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>c</td>
</tr>
</tbody>
</table>
```

```
A  
<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>d</td>
</tr>
</tbody>
</table>
```

Not a tree:

```
A  
<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>b</td>
</tr>
</tbody>
</table>
```

```
A  
<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>c</td>
</tr>
</tbody>
</table>
```

```
A  
<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>b</td>
</tr>
</tbody>
</table>
```
Classify these for Tree-dom
More Graphs to Classify

- Graph 1: b → c → d → e
- Graph 2: b → c → f → d → e
- Graph 3: b → c → d → e
- Graph 4: b → c → f → d → e
Reverse Graphs

- Some graphs that may look tree-like aren’t technically trees unless we consider the reverse graph (one with all of the arcs of the original reversed).
Reconvergence, an Alternative

- A **reconvergence** is a pair of different paths that start and end, respectively, on the same nodes.

- Therefore, a tree can also be characterized as a directed graph that
 - has one root
 - has no cycles
 - has no reconvergences

Reconvergence below:
- c, d, e
- c, e
Subsets of Three Properties

- **DAG**: acyclic, but
 - may have multiple roots,
 - may have fan-in

- **Forest**: acyclic, and no fan-in but
 - may have multiple roots

- A forest can also be characterized as a collection of disjoint trees. Each tree could be identified with its root.
Adding/Removing Arcs

- Adding arcs to a _______ that is not a tree may make it into a tree.
- Adding arcs to a _______ that is not a tree will never make it into a tree.
- Removing arcs from a _______ that is not a tree may make it into a tree.
- Removing arcs from a _______ that is not a tree will never make it into a tree.
Ordered Directed Graphs

- We use the adjective *ordered* to indicate that the *order of targets* of a node matters.
- This property is *implicit* with trees much of the time.
- Because we are going to represent trees by *lists*, we can have ordering for free if we want it.
Representing/Implementing Trees as Lists

- Every tree can be represented as a list.
- Obvious:
 - Tree is a special kind of directed graph.
 - Every directed graph can be represented as a list of pairs.
- But we want a representation that makes it clear that we have a tree.
First Try: Target Sets

- We know that **sets** can be represented as lists.
- List the nodes of the tree.
- Associate each node with its list of targets.
Target-Lists Representation

- \([[a, [b, c]], [b, []], [c, [d, e]], [d, []], [e, []]]\)

- This works for graphs in general; is not limited to trees.
- Doesn’t directly show tree-dom.
Nested Target-Lists Representation

- Recursively, list the root, followed by the representation of each sub-tree:

\[
\begin{align*}
\text{root} & \quad \text{sub-trees} \\
& \quad [a, __, ___] \\
& \quad [a, [b], [c, __, __]] \\
& \quad [a, [b], [c, [d], [e]]]
\end{align*}
\]
Modified
Nested Target-Lists Representation

- (Recall: A leaf is a node with no targets.)
- When a sub-tree is a leaf, omit the brackets around it.
 - \([a, ____, ____]\)
 - \([a, b, [c, ____, ____]]\)
 - \([a, b, [c, d, e]]\)
- Less-cluttered appearance, but also less uniform processing.
Testing leaf property

- In rex, values are either:
 - **atomic**: numbers, strings
 - **non-atomic**: lists, arrays
- **atomic(X)** tells whether X is atomic.
Representation of “Unlabelled” Trees

- In this model, only leaves have labels.
- A leaf is represented by its label.
- A non-leaf tree is represented by a list of the representations of the targets of the root.
 - [a, [b, c]]

![Diagram of tree representation]

- [a, _____]
How could you represent a tree in which both nodes and arcs have labels?
Representing Lists by Ordered Trees

- This is a kind of converse to previous discussion.
- Every list can be represented as an ordered **binary tree** (tree in which each node has at most two targets).
- This corresponds to a “box” storage abstraction, where the data items may themselves be lists.
Representing Lists as Trees

- An atomic item (non-list) is represented by itself.
- The null list is represented as a leaf [].
- A list [First | Rest] is represented by a node with two targets:
 - The left target is the representation of First.
 - The right target is the representation of Rest.
- Note that ordering of targets is essential.
Representing Lists as Trees

Atom a: \(a \)

Empty list \([\,]\): \([\,]\)

Non-empty list \([F \mid R]\):

Rep. of F

Rep. of R
Matters are actually simpler if we rotate the tree 45°, so that “right” is horizontally right and “left” is down.
Example: Binary Tree

- Represent as a binary tree: [1, 2, 3]
Example: Binary Tree

Represent as a binary tree:

\[[1, [2, 3], [4]] \]
Corresponding Box Diagram

[1, [2, 3], [4]]