Some Applications of Backpropagation
Sonar target recognition (Gorman and Sejnowski, 1988)

- 2-layer backprop network trained to distinguish between reflected sonar signals of rocks and metal cylinders at bottom of Chesapeake Bay

- 60 input units, 2 output units

- Input patterns based on Fourier transform of raw time signal

- Tried varying numbers of hidden units (0, 3, 12, 24)

- Best performance with 12 hidden units (close to 100% accuracy)

- 85-90% classification accuracy for signals not in training set
NETTalk (Sejnowski and Rosenberg, 1986)

- The authors taught a neural network to “read” using backpropagation.

- A stream of words were given to the network, along with the phoneme pronunciation of each in symbolic form.

- A speech generation device was used to convert the phonemes to sound.

- The network learned the phoneme pronunciations, thus was able to “speak” the words from a stream of words.
NETTalk

- 203-80-26 Multi-layer network
- Input is rolling sequence of 7 characters
- $203 = 7 \times 29$ different characters
- Output is the phoneme (if any) for the middle letter in the sequence
NETTalk

- 80 hidden units
- trained on 1024 words using a side-by-side English/phoneme source
- intelligible speech after 10 training epochs; 95% accuracy on training corpus after 50 epochs
- some hidden units developed meaningful responses (e.g., vowels vs. consonants)
- generalization: 78% accuracy on continuation of training text
- damaging network produced graceful degradation, with rapid recovery on retraining
- DECTalk performed better, but used hand-coded linguistic rules developed over a decade
Similar results were reproduced in the spring 2000 offering of CS 152 by two Pomona College students named “Greg” (Greg Fishbein and Greg Schueler).

The data for NETTalk can be found at

http://homepages.caе.wisc.edu/~ece539/data/nettalk/
GloveTalk II (Fels & Hinton, 1995)

CHI '95 Proceedings
www.acm.org/sigchi/chi95/Electronic/documents/papers/ssf_bdy.htm
GloveTalk II
Zipcode Recognition (Yann LeCun, 1990)

40004 75216
41199-2087 23505
96205 44151
44205 05153

44310
Normalize Digits First
Network Structure

10 output units
30 units
12 feature detectors (4 by 4)
12 feature detectors (8 by 8)
16 by 16 input
Feature Detectors

Figure 5.3: A feature map.
Sub-sampling Map

Figure 5.4: A sub-sampling map.
Architecture

- **Input layer**: 256 = 16x16 neurons with input values in range [-1, 1].

- **Hidden layer H1**: consists of 12 feature maps H1.1, …, H1.12.

- Feature map:
 - 8x8 neurons.
 - Each neuron in the feature map has the *same* incoming weights, but is connected to a square at a unique position in the input image. This square is called a *template*.
Architecture

• Hidden layer H2: consists of 12 sub-sampling maps H2.1, ..., H2.12.

• Sub-sampling map:
 • Consists of 4x4 neurons.
 • Each neuron of the sub-sampling map is connected to a 5x5 square of H1.j, for each j in 8 of the 12 feature maps.
 • All neurons of the sub-sampling map share the same 25 weights.
Architecture

- Hidden layer H3:
 - Consists of 30 neurons.
 - H3 is completely connected to the sub-sampling layer (H2).

- Output layer: consists of 10 neurons, numbered 0, … , 9 and the neuron with the highest activation value is chosen. The digit recognized is equal to the cell number.
Atypical Data Recognized

96273
Further Details and Results

- ~10,000 digits from the U.S. mail were used to train and test system
- ZIP codes on envelopes were initially located and segmented by a separate system (difficult task in itself)
- weight sharing used to constrain number of free parameters
- 1256 units + 30060 links + 1000 biases, but only 9760 free parameters
- used an accelerated version of backprop (pseudo-Newton rule)
- trained on 7300 digits, tested on 2000
- error rate of ~1% on training set, ~5% on test set
- if marginal cases were rejected (two or more outputs approximately the same), error reduced to ~1% with 12% rejected
- used "optimal brain damage" technique to prune unnecessary weights
- after removing weights and retraining, only ~1/4 as many free parameters as before, but better performance
- 99% classification accuracy with 9% rejection rate
- achieved state of the art in digit recognition
- much problem-specific knowledge was designed into the network architecture
- preprocessing of input data was crucial to success
http://yann.lecun.com/exdb/lenet/
Face Recognition (Mitchell, 1997)

- 90% Accurate Learning Head Pose, Recognizing 1-of-20 Faces
- http://www.cs.cmu.edu/~tom/faces.html
ALVINN (Pomerleau, 1996)

- network controlled steering of a car on a winding road
- network inputs: 30 x 32 pixel image from a video camera, 8 x 32 gray scale image from a range finder
- 29 hidden units
- 45 output units arranged in a line corresponding to steering angle
- achieved speeds of up to 70 mph for 90 minutes on highways outside of Pittsburgh
Tabulation of Some Large Backpropagation Examples

<table>
<thead>
<tr>
<th>application</th>
<th>#weights</th>
<th>#samples</th>
<th>error</th>
<th>ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>text -> speech</td>
<td>25000</td>
<td>5000</td>
<td>0.20</td>
<td>Sejnowski</td>
</tr>
<tr>
<td>sonar target rec</td>
<td>1105</td>
<td>192</td>
<td>0.15</td>
<td>Gorman</td>
</tr>
<tr>
<td>car control</td>
<td>>36000</td>
<td>1200</td>
<td>car drives on winding road</td>
<td>Pomerleau</td>
</tr>
<tr>
<td>back-gammon</td>
<td>>11000</td>
<td>3000</td>
<td>computer champion</td>
<td>Tesauro</td>
</tr>
<tr>
<td>sex rec from faces</td>
<td>>36000</td>
<td>90</td>
<td>0.09</td>
<td>Golomb</td>
</tr>
<tr>
<td>char rec</td>
<td>9900</td>
<td>5000</td>
<td>0.055</td>
<td>Sato</td>
</tr>
<tr>
<td>remote sensing</td>
<td>1800</td>
<td>50</td>
<td>0.05-0.10</td>
<td>Kamata</td>
</tr>
<tr>
<td>signature verif.</td>
<td>480</td>
<td>280</td>
<td>0.05</td>
<td>Sabourin</td>
</tr>
</tbody>
</table>

