type of techniques

- simple pixel modification
- interpolation/extrapolation
- compositing
- **convolution**
- dithering
- warping
- morphing
- misc. effects

convolution

\[\sum w_{ij} v_{ij} \]

boundaries?

kernel

\[
\begin{array}{ccc}
 w_{11} & \ldots & w_{1n} \\
 \vdots & \ddots & \vdots \\
 w_{n1} & \ldots & w_{nn}
\end{array}
\]

n odd

edge detect

edge detect kernel

\[
\begin{pmatrix}
 -1 & -1 & -1 \\
 -1 & 8 & -1 \\
 -1 & -1 & -1
\end{pmatrix}
\]

need to clamp values to \([0, 1]\)
why blur?

3x3 box blur

\[
\begin{array}{ccc}
1/9 & 1/9 & 1/9 \\
1/9 & 1/9 & 1/9 \\
1/9 & 1/9 & 1/9 \\
\end{array}
\]

why is it important that the sum of the weights is 1?

nXn box blur

\[
\begin{array}{ccc}
w & \cdots & w \\
\cdot & \cdot & \cdot \\
w & \cdots & w \\
\end{array}
\]

w = \frac{1}{n^2}

box blur vs. triangle blur

3x3 triangle blur

\[
\begin{array}{ccc}
1/16 & 1/8 & 1/16 \\
1/8 & 1/4 & 1/8 \\
1/16 & 1/8 & 1/16 \\
\end{array}
\]
how to compute nXn triangle blur?

- Compute 1D normalized triangle filter
- Use separability

separability

A kernel is separable if $W_{ij} = w_i w_j$

is the box filter separable?

n x n triangle blur kernel

- Compute sample values for 1D triangle function: $w_1, \ldots, w_{(n+1)/2}, \ldots, w_n$
- Normalize 1D values
- Compute kernel $W_{ij} = w_i w_j$

sampled triangle function

\[
S_i = \begin{cases}
 i & \text{for } 0 \leq i \leq \frac{(n+1)}{2} \\
 (n+1) - i & \text{for } \frac{(n+1)}{2} < i \leq n+1
\end{cases}
\]

Normalized

\[
B = \sum_{i=0}^{\frac{(n+1)}{2}} S_i = \sum_{i=0}^{\frac{(n+1)}{2}} i \ast \sum_{i=1}^{\frac{(n+1)}{2}} \ldots \frac{n+1-i}{2} = \frac{(n+1)^2}{4}
\]

\[
w_i = \frac{S_i}{B}
\]
normalized sampled triangle

\[w_i = \frac{4i}{(n+1)^2} \quad \text{for} \quad 0 < i \leq \frac{n+1}{2} \]
\[w_i = \frac{4((n+1)-i)}{(n+1)^2} \quad \text{for} \quad \frac{n+1}{2} < i \leq n+1 \]

triangle blur filter

\[w_i w_j \]

ith row

jth column

for row \(i = 1, \ldots, n \) and column \(j = 1, \ldots, n \)

example: \(n = 3 \)

\[w_i = \frac{4i}{(n+1)^2} \quad \text{for} \quad 0 < i \leq \frac{n+1}{2} \]
\[w_i = \frac{4((n+1)-i)}{(n+1)^2} \quad \text{for} \quad \frac{n+1}{2} < i \leq n+1 \]

3x3 triangle blur filter

\[
\begin{array}{ccc}
1/16 & 1/8 & 1/16 \\
1/8 & 1/4 & 1/8 \\
1/16 & 1/8 & 1/16 \\
\end{array}
\]

box, triangle and gaussian blurs

gaussian function

\[f(x) = e^{-x^2/\sigma^2} \]

\(\sigma \) is an input parameter that controls the width of peak
sampled

\[s_i = e^{-(i-(n+1)/2)^2/\sigma^2} \]
for \(i = 1, \ldots, n \)

normalized

\[B = \sum_{i=1}^{n} e^{-(i-(n+1)/2)^2/\sigma^2} \]
is the normalizing constant

\[w_i = \frac{s_i}{B} \]

example: \(n=3, \sigma=1 \)

\[
\begin{array}{ccc}
1 & 2 & 3 \\
.212 & .576 & .212 \\
.212 & .212 & .212 \\
\end{array}
\]

3x3 gaussian blur, \(\sigma = 1 \)

\[
\begin{array}{ccc}
.122 & .332 & .122 \\
.045 & .122 & .045 \\
.212 & .576 & .212 \\
\end{array}
\]

types of techniques

- simple pixel modification
- interpolation/extrapolation
- compositing
- convolution
- dithering
- warping
- morphing
- misc. effects

forward warp

\(f \)

\((x, y) \)

\((x', y') \)

\(f \) maps points in input image to the plane
forward warp

<table>
<thead>
<tr>
<th>input image</th>
<th>$f^{-1}(i,j)$ output image</th>
</tr>
</thead>
<tbody>
<tr>
<td>pixel at (i,j) in output image is assigned the value at location $f^{-1}(i,j)$ in input image</td>
<td></td>
</tr>
</tbody>
</table>

forward warp: problems

- if f is not bijective
 1. $f^{-1}(i,j)$ may not be defined
 2. $f^{-1}(i,j)$ may not be unique

backward warp

<table>
<thead>
<tr>
<th>(x,y)</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>f maps points in output image to the plane</td>
<td></td>
</tr>
</tbody>
</table>

backward warp

<table>
<thead>
<tr>
<th>(x,y)</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>pixel (i,j) in output image is assigned value of input image at location $f(i,j)$</td>
<td></td>
</tr>
</tbody>
</table>

backward warp: problems

1. $f(i,j)$ may lie outside the input image area
 - solution: give image an infinite, black (or other default) border
2. $f(i,j)$ may not lie on a sample of the input image
 - solution: resample input

re-sample: estimate input image at arbitrary location
re-sample
interpolate based on nearby samples
- nearest
- bilinear
- bicubic
- gaussian

which way is up?
what are the coordinates of the pixels surrounding (x,y)?

nearest
- compute distance between x,y and the locations of the neighboring samples
- set value at x,y to the value of the closest neighbor

bilinear interpolation
1. interpolate to find values at (x,y) and (x+1,y)

re-sample
interpolate based on nearby samples
- nearest
- bilinear
- bicubic
- gaussian
bilinear interpolation

1. interpolate to find values at \((x, y) \) and \((x, y+1) \)
2. interpolate to find value at \(x, y \)

re-sample

interpolate based on nearby samples
- nearest
- bilinear
- bicubic
- gaussian

bicubic

1. interpolate to find values at \((x, y+j) \)

bicubic

1. interpolate to find values at \((x, y+j) \)
2. interpolate to find value at \((x, y) \)

bicubic: lagrangian

there is a unique cubic polynomial through any four distinct sample points

lagrange cubic polynomial

\[
P(x) = \sum_{i=0,1,2,3} s_i \prod_{j=1,2,3,4} (x-x_j)/(x_i-x_j)
\]

exercise: what is the value of \(P(x) \) for \(i=0,1,2,3 \)
re-sample

interpolate based on nearby samples
- nearest
- bilinear
- bicubic
- gaussian

gaussian

interpolate nearby samples using normalized gaussian weights

unnormalized weight at \((i,j)\) in window is
\[
\exp[-((x-i)^2+(y-j)^2)/\sigma^2]
\]

types of techniques

- simple pixel modification
- interpolation/extrapolation
- compositing
- convolution
- dithering
- warping
- morphing
- misc. effects

dissolve

- film/video technique to fade from one shot to another

blending across time

\[
\alpha(t)I_0 + (1-\alpha(t))I_1
\]

\[
\alpha(t)
\]

\[
0 \quad \quad 1
\]

\[
t_0 \quad \quad t_1
\]

blending example
morphing = warping + blending

morphing = warping + blending

morphing = warping + blending

morphing how to

specifying the warp

specifying the warp
each line moves in time

computing the warp between adjacent images

computing the warp between adjacent images - single line

warp - single line

warp - single line

warp - single line

consider some special cases
warp – single line

consider some special cases

warp – multiple lines

compute weight for each line pair based on distance to p in destination

$w = \left(\frac{Lc}{a+d} \right)^b$

where L is the length of the line segment, d is the distance from p to the line segment, a, b, and c are parameters to control the effect

compute source for each pair of lines using one-line algorithm

compute displacement from p to each source point
warp - multiple lines

compute weighted displacement from p in source

demo

do it yourself