Ray tracing

- Ray casting
 - Rays
 - Intersection tests
 - Intersection with scene graph
 - Lighting and material properties
- Recursive ray tracing
- Cheap tricks
- Optimizations

Ray tracing

- Cast ray into scene
- Find intersection point (if any) that is closest to eye
- Compute luminance at intersection

Find intersection point

- Find intersection point
- Sphere
- Viewpoint

Find intersection point

- Squashed (aka transformed) sphere
- Viewpoint

Find intersection point

- Does this make sense?
- Is there an inverse transform?
- How do we apply a transform to a ray?
- Is a ray in world coordinates a ray in object coordinates?
Conceptually: scale

What operation inverts a scale by \(s \) in the x-direction?

For \(s \neq 0 \), scale by \(1/s \) in the x-direction.

Any problem?

We are not alone!

we are not alone...

the parallel universe view of homogenous coordinates

\((x,y) \)

we live in this universe

\((x',y') \)

it's not the only one, but it is the only one we can experience!

Conceptually: rotate

What operation inverts a rotate by \(\theta \) about the x-axis?

Rotate by \(-\theta\) about the x-axis.

rotate about z axis

\[
\begin{pmatrix}
\cos \phi & -\sin \phi & 0 & 0 \\
\sin \phi & \cos \phi & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{pmatrix}
\]

\[
\begin{pmatrix}
\cos (-\phi) & -\sin (-\phi) & 0 & 0 \\
\sin (-\phi) & \cos (-\phi) & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{pmatrix}
\]

\[
\begin{pmatrix}
\cos \phi & -\sin \phi & 0 & 0 \\
\sin \phi & \cos \phi & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{pmatrix}
\]

\[
\begin{pmatrix}
\cos \phi & -\sin \phi & 0 & 0 \\
\sin \phi & \cos \phi & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{pmatrix}
\]

remember \(\cos(-\phi) = \cos(\phi) \) and \(\sin(-\phi) = -\sin(\phi) \)

remember \(\cos^2 \phi + \sin^2 \phi = 1 \)
Conceptually: translate

What operation inverts a translate by dx in the x-direction?

Translate by $-dx$ in the x-direction.

\[
\begin{align*}
1 & \quad 0 & \quad 0 & \quad -x_0 \\
0 & \quad 1 & \quad 0 & \quad -y_0 \\
0 & \quad 0 & \quad 1 & \quad -z_0 \\
0 & \quad 0 & \quad 0 & \quad 1
\end{align*}
\]

\[
\begin{align*}
1 & \quad 0 & \quad 0 & \quad x_0 \\
0 & \quad 1 & \quad 0 & \quad y_0 \\
0 & \quad 0 & \quad 1 & \quad z_0 \\
0 & \quad 0 & \quad 0 & \quad 1
\end{align*}
\]

does this make sense?

- is there an inverse transform?
- how do we apply a transform to a ray?
- is a ray in world coordinates a ray in object coordinates?

transforms: vector

\[v = p - q\]

\[\mathbf{T}(v) = \mathbf{T}(p - q) = \mathbf{T}(p) - \mathbf{T}(q) = M p - M q\]

Warnings:
- because of translation we can't ignore $q=(0,0,0)$
- re-unitize unit vectors

transform

- Points
- Vectors
- Rays

Done!!
transforms: ray

- Points
- Vectors
- Rays: \(r = (p, v) \)

Transform point and transform/unitize vector!

does this make sense?

- is there an inverse transform?
- how do we apply a transform to a ray?
- is a ray in world coordinates a ray in object coordinates?

Linear transforms
Linear transforms preserve lines!

find intersection point

M and M\(^{-1}\)

single transform

- scale by \(s \)
- rotate by \(\theta \)
- translate by \(\Delta \)

\(M = \begin{pmatrix} s & 0 & 0 \\ 0 & \cos \theta & \sin \theta \\ 0 & -\sin \theta & \cos \theta \end{pmatrix} \)

- scale by \(1/s \)
- rotate by \(-\theta \)
- translate by \(-\Delta \)

\(M^{-1} = \begin{pmatrix} 1/s & 0 & 0 \\ 0 & \cos (-\theta) & -\sin (-\theta) \\ 0 & \sin (-\theta) & \cos (-\theta) \end{pmatrix} \)

composite transform

\((M_1M_2\ldots M_k)^{-1} = M_k^{-1}\ldots M_2^{-1}M_1^{-1} \)

scene graph traversal

A sends the ray (represented relative to A’s coordinate system) to B.
scene graph traversal

A ray: R_A

B converts the ray into its own coordinate system

$R_A \rightarrow T(R_A)$

scene graph traversal

A ray: R_A

B computes the intersections of R_B with its objects

scene graph traversal

A ray: R_A

B sends R_B to its descendents
Each returns intersection information (represented in B's coordinate system)
B chooses closest to viewer
B converts intersection info to A's coordinate system and returns it

surface normal

is the normal to a transformed surface the transformed normal?

N is normal to the tangent plane iff for any points p and q on the tangent plane $N \cdot (p-q) = 0$.

The right way ...

N is normal to the tangent plane.
The right way ...

N is normal to the tangent plane iff for any points p and q on the tangent plane \(N \cdot (p-q) = 0 \).

Assume N is normal to the tangent plane and QN is normal to the tangent plane transformed by M.

Q must satisfy the following for any points p and q on the tangent plane:

\[N \cdot (p-q) = 0 \iff (QN) \cdot (M(p-q)) = 0 \]

\[N \cdot (p-q) = 0 \iff N' \cdot (Q'M)(p-q) = 0 \]

Thus \(Q = M^{-1} \cdot N' \).

ray casting

- cast ray through pixel into scene
- find intersection point (if any) that is closest to eye
- compute luminance at intersection