Ray casting

- cast ray through pixel into scene
- find intersection point (if any) that is closest to eye
- compute color at intersection

Color

The color of a point on a surface depends on:
- lights in scene
- material properties of surface
- geometry of scene

For each channel, we'll approximate the color at the intersection point as the sum of five terms:
- emission
- ambient reflection
- diffuse reflection
- specular reflection
- specular transmission

We'll describe the terms for the red channel.

Red emission term

mer the material red emission

Note: terms shown in red are input parameters
ambient light

uniform from every direction in scene

red ambient term

the red ambient term is \(ar \cdot mar \) where
- \(ar \) is the red intensity of the ambient light
- \(mar \) is the response of the surface to red ambient light

color

for each channel we’ll approximate the color \(e \) at the intersection point as the sum of five terms
- emission
- ambient reflection
- diffuse reflection
- specular reflection
- specular transmission

diffuse reflections

rough/matte surface: light reflects uniformly in all directions
diffuse reflections provide the surface "color"

red diffuse term

the red diffuse reflection term is \(\sum R_{L,D} \) where
- the summation is taken over all lights \(L \)
- \(R_{L,D} \) is the intensity of the red, diffuse reflection of light \(L \) at the intersection point

\(R_{L,D} \)

depends on
- type of light
- geometry of scene
- material properties of surface

Note: terms in green are explained in subsequent slides
types of lights

- directional light
- point light
- spot light

directional light

- light positioned at "infinity"; intensity and incident angle are constant for all points in scene
- specification
 - direction
 - red, green, and blue intensity

\[R_{L,D} = \begin{cases} 0 & \text{if } L \text{ is occluded} \\ \text{otherwise} \\ \frac{mdr \cdot lr \cdot \max(0, (n \cdot -ld))}{m} & \end{cases} \]

- mdr is the diffuse response of the surface material to red light
- lr is the red intensity of light L
- n is the unit normal of the surface at the point of intersection
- ld is a unit vector in direction the light falls

Note: you need to compute terms in blue

point light

- light emanates uniformly in all directions
- specification
 - location in world coordinates
 - red, green, and blue intensity
 - how the light drops off with distance

\[R_{L,D} = \begin{cases} 0 & \text{if } L \text{ is occluded} \\ \text{otherwise} \\ A \cdot mdr \cdot lr \cdot \max(0, n \cdot -ld)) & \end{cases} \]

- mdr, lr, and n are as previously defined
- ld is the unit vector from the light position P_L to the intersection point
- \(A = 1/(ca + la \cdot d + qa \cdot d^2) \) is the attenuation term, d is the distance between the light and the surface point
spot light

- light emanates in a cone
- specifications
 - location in world coordinates
 - red, green, and blue intensity
 - how the light drops off with distance
 - how light drops with angle from center

RL,D for spot light L

\[R_{L,D} = 0 \text{ if } L \text{ is occluded} \]

\[R_{L,D} = A \cdot SP \cdot mdr \cdot lr \cdot \max(0, n \cdot -ld) \]

where
- \(A, mdr, lr, \) and \(ld \) are as previously defined
- \(SP \) is the "spot light effect"
 - \(SP = 0 \) if angle between \(lo \) and \(ld \) is greater than \(CO \)
 - \(SP = \max(0, ld \cdot lo)^{\text{drop off exponent DO}} \) otherwise

Diffuse reflection term for each light L

\[R_{L,D} = 0 \text{ if } L \text{ is occluded} \]

\[R_{L,D} = A \cdot SP \cdot mdr \cdot lr \cdot \max(0, n \cdot -ld) \]

color

for each channel we’ll approximate the color at the intersection point as the sum of five terms
- emission
- ambient reflection
- diffuse reflection
- specular reflection
- specular transmission

specular reflections

specular reflections provide highlights
red specular

the red specular reflection term is
\[(1-k_{\text{trans}}) \sum R_{L,S} \]
where
- the summation is taken over all lights \(L\)
- \(R_{L,S}\) is the intensity of the red, specular reflection of light \(L\) at the intersection point (details to follow shortly)

vector of reflection
\[dr = (-ld \cdot n) \text{ since } n \text{ is a unit vector} \]
\[\theta = \theta \]

directional light

light positioned at infinity; intensity and incident angle are constant for all surface points in scene

vector of reflection
\[dr \text{ given } n \text{ and } ld \]
(all unit vectors)

\(R_{L,S}\) for directional light \(L\)

\[R_{L,S} = 0 \text{ if light is occluded} \]
\[R_{L,S} = msr \cdot lr \cdot \max(0,(-v \cdot dr)) \cdot 128 \cdot k_{\text{spec}} \]
on otherwise
- \(msr\) is the specular response of the surface material to red light
- \(lr\) is as previously defined
- \(v\) is the direction of the incoming ray
- \(dr\) is a unit vector in the direction of reflection
- \(k_{\text{spec}}\) is the shininess constant

\(R_{L,S}\) depends on
- type of light
- geometry of scene
- material properties of surface
The vector of reflection is given by:

$$dr = -ld + 2((-ld \cdot n + ld) \cdot n + ld)$$

For point light L, the illumination R_{LS} is:

$$R_{LS} = \begin{cases} 0 & \text{if light is occluded} \\ A \cdot m \cdot r \cdot \max(0, (-v \cdot dr))^{128} \cdot k_{spec} & \text{otherwise} \end{cases}$$

where all terms are as previously defined.

For spot light, the illumination is:

$$R_{LS} = \begin{cases} \text{light emanates in a cone} & \\ \text{specifications} & \\ \text{- location in world coordinates} & \\ \text{- red, green, and blue intensity} & \\ \text{- how the light drops off with distance} & \\ \text{- how light drops with angle from center} & \\ \end{cases}$$
Specular reflection term for each light L

- $R_{LS} = 0$ if L is occluded
- $R_{LS} = A \cdot \text{SP} \cdot msr \cdot lr \cdot \max(0, (-v \cdot dr))^{128 \cdot k_{spec}}$

Spot light effect

Positional/spot light attenuation

R_L_S for spot light L

- $R_{LS} = 0$ if L is occluded
- $R_{LS} = A \cdot \text{SP} \cdot msr \cdot lr \cdot \max(0, (-v \cdot dr))^{128 \cdot k_{spec}}$
 otherwise

All terms are as previously described

Color

For each channel, we'll approximate the color at the intersection point as the sum of five terms:
- Emission
- Ambient reflection
- Diffuse reflection
- Specular reflection
- Specular transmission

Thin surface for now