Normalization

Anomalies

Boyce-Codd Normal Form

3rd Normal Form

Design Goals

◆ Goal of relational schema design is to avoid:
 ◆ redundancy
 ◆ anomalies.

Redundancy

◆ The same information can be extracted in multiple ways. Consequently:
 ◆ Deleting the information must be sure to delete all representations of the information.
 ◆ Updating the information must be kept consistent in all of the various ways.

Anomalies

◆ Update anomaly: one occurrence of a fact is changed, but not all occurrences.

◆ Deletion anomaly: valid fact is lost when a tuple is deleted.

Example of Bad Design

Drinkers(name, addr, beersLiked, manf, favBeer)

<table>
<thead>
<tr>
<th>name</th>
<th>addr</th>
<th>beersLiked</th>
<th>manf</th>
<th>favBeer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Janeway</td>
<td>Voyager</td>
<td>Bud</td>
<td>A.B. WickedAle</td>
<td>???</td>
</tr>
<tr>
<td>Janeway</td>
<td>???</td>
<td>WickedAle</td>
<td>Bud</td>
<td>???</td>
</tr>
<tr>
<td>Spock</td>
<td>Enterprise</td>
<td>Bud</td>
<td>??</td>
<td>Bud</td>
</tr>
</tbody>
</table>

Data is redundant, because each of the ???’s can be figured out by using given FD’s:
 name -> addr favBeer
 beersLiked -> manf

This Bad Design Also Exhibits Anomalies

name	addr	beersLiked	manf	favBeer
Janeway | Voyager | Bud | A.B. WickedAle | ??? |
Janeway | Voyager | Bud | A.B. WickedAle | ??? |
Spock | Enterprise | Bud | ?? | Bud |

◆ Update anomaly: if Janeway is transferred to Intrepid, each of her tuples need to be changed?

◆ Deletion anomaly: If nobody likes Bud, we lose track of the fact that Anheuser-Busch manufactures Bud.
Boyce-Codd Normal Form

- We say a relation R is in BCNF if whenever $X \rightarrow A$ is a nontrivial FD that holds in R, X is a superkey.
 - Remember: nontrivial means A is not a member of set X.
 - Remember, a superkey is any superset of a key (not necessarily a proper superset).

Explaining how bad things happen with non-BCNF (1)

Assume a relation ABCD

C doesn’t depend on AB: update anomaly.
A is not a superkey, but A \rightarrow C is non-trivial.

Explaining how bad things happen with non-BCNF (2)

Assume a relation ABC

B is not a superkey, but B \rightarrow C is non-trivial. A tuple ABC is required to represent just BC information.

Example

- Drinkers(name, addr, beersLiked, manf, favBeer)
- FD’s: name->addr favBeer, beersLiked->manf
- Only key is \{name, beersLiked\}.
- In each FD, the left side is not a superkey.
- Any one of these FD’s shows Drinkers is not in BCNF

Another Example

- Beers(name, manf, manfAddr)
- FD’s: name->manf, manf->manfAddr
- Only key is \{name\}.
- name->manf does not violate BCNF, but manf->manfAddr does.

Decomposition into BCNF

- Given: relation R with FD’s F.
- Look among the given FD’s for a BCNF violation $X \rightarrow B$.
 - If any FD following from F violates BCNF, then there will surely be an FD in F itself that violates BCNF.
- Compute X^+.
 - Not all attributes, or else X is a superkey.
Decompose R Using $X \rightarrow B$

- Replace R by relations with schemas:
 1. $R_1 = X^*$.
 2. $R_2 = (R - X^*) \cup X$.

- Project given FD's F onto two new relations:
 1. Compute the closure of F = all nontrivial FD's that follow from F.
 2. Use only those FD's whose attributes are all in R_1 or all in R_2.

Example

- $\text{Drinkers}(\text{name, addr, beersLiked, manf, favBeer})$
- $F = \text{name} \rightarrow \text{addr, name} \rightarrow \text{favBeer, beersLiked} \rightarrow \text{manf}$
- Pick BCNF violation $\text{name} \rightarrow \text{addr}$.
- Close the left side: $(\text{name})^* = \{\text{name, addr, favBeer}\}$.
- Decomposed relations:
 1. $\text{Drinkers1}(\text{name, addr, favBeer})$
 2. $\text{Drinkers2}(\text{name, beersLiked, manf})$

Example, Continued

- We are not done; we need to check Drinkers1 and Drinkers2 for BCNF.
- Projecting FD's is complex in general, easy here.
- For $\text{Drinkers1}(\text{name, addr, favBeer})$, relevant FD's are $\text{name} \rightarrow \text{addr}$ and $\text{name} \rightarrow \text{favBeer}$.
 - Thus, name is the only key and Drinkers1 is in BCNF.

Example, Concluded

- The resulting decomposition of Drinkers:
 1. $\text{Drinkers1}(\text{name, addr, favBeer})$
 2. $\text{Drinkers3}(\text{beersLiked, manf})$
 3. $\text{Drinkers4}(\text{name, beersLiked})$
- Notice: Drinkers1 tells us about drinkers, Drinkers3 tells us about beers, and Drinkers4 tells us the relationship between drinkers and the beers they like.
Third Normal Form - Motivation

- There is one structure of FD’s that causes trouble when we decompose.
- AB -> C and C -> B.
 - Example: A = street address, B = city, C = zip code.
- There are two keys, \{A, B\} and \{A, C\}.
- C -> B is a BCNF violation, so we must decompose into AC, BC.

“Unenforceable” FD’s

- The problem is that if we use AC and BC as our database schema, we cannot enforce the FD AB -> C by checking FD’s in these decomposed relations.
- Example with A = street, B = city, and C = zip on the next slide.

An Unenforceable FD

<table>
<thead>
<tr>
<th>street</th>
<th>zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>545 Tech Sq.</td>
<td>02138</td>
</tr>
<tr>
<td>545 Tech Sq.</td>
<td>02139</td>
</tr>
<tr>
<td>city</td>
<td>zip</td>
</tr>
<tr>
<td>Cambridge</td>
<td>02138</td>
</tr>
<tr>
<td>Cambridge</td>
<td>02139</td>
</tr>
</tbody>
</table>

Join tuples with equal zip codes.

<table>
<thead>
<tr>
<th>street</th>
<th>city</th>
<th>zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>545 Tech Sq.</td>
<td>Cambridge</td>
<td>02138</td>
</tr>
<tr>
<td>545 Tech Sq.</td>
<td>Cambridge</td>
<td>02139</td>
</tr>
</tbody>
</table>

Although no FD’s were violated in the decomposed relations, FD street city -> zip is violated by the database as a whole.

3NF Lets Us Avoid This Problem

- 3rd Normal Form (3NF) modifies the BCNF condition so we do not have to decompose in this problem situation.
- An attribute is prime if it is a member of some key.
- X -> A violates 3NF if and only if X is not a superkey, and also A is not prime.

Example

- In our problem situation with FD’s AB -> C and C -> B, we have keys AB and AC.
- Thus A, B, and C are each prime.
- Although C -> B violates BCNF, it does not violate 3NF.

What 3NF and BCNF Give You

- There are two important properties of a decomposition:
 1. **Recovery**: it should be possible to project the original relations onto the decomposed schema, and then reconstruct the original.
 2. **Dependency preservation**: it should be possible to check in the projected relations whether all the given FD’s are satisfied.
3NF and BCNF, Continued

- We can get (1) with a BCNF decomposition.
 - Explanation needs to wait for relational algebra.
- We can get both (1) and (2) with a 3NF decomposition.
- But we can’t always get (1) and (2) with a BCNF decomposition.
 - street-city-zip is an example.