On-Line Application Processing

Warehousing
Data Cubes
Data Mining

Overview

◆ Traditional database systems are tuned to many, small, simple queries.

◆ Some new applications use fewer, more time-consuming, complex queries.

◆ New architectures have been developed to handle complex “analytic” queries efficiently.
The Data Warehouse

◆ The most common form of data integration.
 ▶ Copy sources into a single DB (warehouse) and try to keep it up-to-date.
 ▶ Usual method: periodic reconstruction of the warehouse, perhaps overnight.
 ▶ Frequently essential for analytic queries.

OLTP

◆ Most database operations involve On-Line Transaction Processing (OTLP).
 ▶ Short, simple, frequent queries and/or modifications, each involving a small number of tuples.
 ▶ Examples: Answering queries from a Web interface, sales at cash registers, selling airline tickets.
Of increasing importance are On-Line Application Processing (OLAP) queries.

- Few, but complex queries --- may run for hours.
- Queries do not depend on having an absolutely up-to-date database.
- [Sometimes called Data Mining.]

OLAP Examples

1. Amazon analyzes purchases by its customers to come up with an individual screen with products of likely interest to the customer.

2. Analysts at Wal-Mart look for items with increasing sales in some region.
Common Architecture

- Databases at store branches handle OLTP.
- Local store databases copied to a central warehouse overnight.
- Analysts use the warehouse for OLAP.

Star Schemas

- A star schema is a common organization for data at a warehouse. It consists of:
 1. *Fact table*: a very large accumulation of facts such as sales.
 - Often “insert-only.”
 2. *Dimension tables*: smaller, generally static information about the entities involved in the facts.
Example: Star Schema

- Suppose we want to record in a warehouse information about every beer sale: the bar, the brand of beer, the drinker who bought the beer, the day, the time, and the price charged.

- The fact table is a relation:
 Sales(bar, beer, drinker, day, time, price)

Example, Continued

- The dimension tables include information about the bar, beer, and drinker “dimensions”:
 - Bars(bar, addr, license)
 - Beers(beer, manf)
 - Drinkers(drinker, addr, phone)
Dimensions and Dependent Attributes

◆ Two classes of fact-table attributes:

1. *Dimension attributes*: the key of a dimension table.
2. *Dependent attributes*: a value determined by the dimension attributes of the tuple.

Example: Dependent Attribute

◆ *price* is the dependent attribute of our example Sales relation.

◆ It is determined by the combination of dimension attributes: *bar, beer, drinker*, and the time (combination of *day* and *time* attributes).
Approaches to Building Warehouses

1. **ROLAP** = “relational OLAP”: Tune a relational DBMS to support star schemas.

2. **MOLAP** = “multidimensional OLAP”: Use a specialized DBMS with a model such as the “data cube.”

ROLAP Techniques

1. **Bitmap indexes**: For each key value of a dimension table (e.g., each beer for relation Beers) create a bit-vector telling which tuples of the fact table have that value.

2. **Materialized views**: Store the answers to several useful queries (views) in the warehouse itself.
Typical OLAP Queries

◆ Often, OLAP queries begin with a “star join”: the natural join of the fact table with all or most of the dimension tables.

◆ Example:

```sql
SELECT *
FROM Sales, Bars, Beers, Drinkers
WHERE Sales.bar = Bars.bar AND
    Sales.beer = Beers.beer AND
    Sales.drinker = Drinkers.drinker;
```

Typical OLAP Queries --- 2

◆ The typical OLAP query will:
 1. Start with a star join.
 2. Select for interesting tuples, based on dimension data.
 3. Group by one or more dimensions.
 4. Aggregate certain attributes of the result.
Example: OLAP Query

1. For each bar in Palo Alto, find the total sale of each beer manufactured by Anheuser-Busch.
2. Filter: \(addr = \text{"Palo Alto"} \) and \(manf = \text{"Anheuser-Busch"} \).
4. Aggregation: Sum of \(price \).

Example: In SQL

```sql
SELECT bar, beer, SUM(price)
FROM Sales NATURAL JOIN Bars
    NATURAL JOIN Beers
WHERE addr = 'Palo Alto' AND
      manf = 'Anheuser-Busch'
GROUP BY bar, beer;
```
Using Materialized Views

◆ A direct execution of this query from Sales and the dimension tables could take too long.

◆ If we create a materialized view that contains enough information, we may be able to answer our query much faster.

Example: Materialized View

◆ Which views could help with our query?
◆ Key issues:
 1. It must join Sales, Bars, and Beers, at least.
 2. It must group by at least bar and beer.
 3. It must not select out Palo-Alto bars or Anheuser-Busch beers.
 4. It must not project out addr or manf.
Example --- Continued

◆ Here is a materialized view that could help:

CREATE VIEW BABMS(bar, addr, beer, manf, sales) AS
SELECT bar, addr, beer, manf, SUM(price) sales
FROM Sales NATURAL JOIN Bars
 NATURAL JOIN Beers
GROUP BY bar, addr, beer, manf;

Since bar -> addr and beer -> manf, there is no real grouping. We need addr and manf in the SELECT.

Example --- Concluded

◆ Here’s our query using the materialized view BABMS:

SELECT bar, beer, sales
FROM BABMS
WHERE addr = 'Palo Alto' AND
 manf = 'Anheuser-Busch';
MOLAP and Data Cubes

- Keys of dimension tables are the dimensions of a hypercube.
 - Example: for the Sales data, the four dimensions are bars, beers, drinkers, and time.
- Dependent attributes (e.g., price) appear at the points of the cube.

Marginals

- The data cube also includes aggregation (typically SUM) along the margins of the cube.
- The marginals include aggregations over one dimension, two dimensions,...
Example: Marginals

◆ Our 4-dimensional Sales cube includes the sum of \textit{price} over each bar, each beer, each drinker, and each time unit (perhaps days).

◆ It would also have the sum of \textit{price} over all bar-beer pairs, all bar-drinker-day triples,...

Structure of the Cube

◆ Think of each dimension as having an additional value *.

◆ A point with one or more *’s in its coordinates aggregates over the dimensions with the *’s.

◆ Example: Sales(“Joe’s Bar”, “Bud”, *, *) holds the sum over all drinkers and all time of the Bud consumed at Joe’s.
Drill-Down

◆ *Drill-down* = “de-aggregate” = break an aggregate into its constituents.

◆ Example: having determined that Joe’s Bar sells very few Anheuser-Busch beers, break down his sales by particular A.-B. beer.

Roll-Up

◆ *Roll-up* = aggregate along one or more dimensions.

◆ Example: given a table of how much Bud each drinker consumes at each bar, roll it up into a table giving total amount of Bud consumed for each drinker.
Materialized Data-Cube Views

- Data cubes invite materialized views that are aggregations in one or more dimensions.

- Dimensions may not be completely aggregated --- an option is to group by an attribute of the dimension table.

Example

- A materialized view for our Sales data cube might:
 1. Aggregate by drinker completely.
 2. Not aggregate at all by beer.
 3. Aggregate by time according to the week.
 4. Aggregate according to the city of the bar.
Data Mining

- **Data mining** is a popular term for queries that summarize big data sets in useful ways.
- Examples:
 1. Clustering all Web pages by topic.
 2. Finding characteristics of fraudulent credit-card use.

Market-Basket Data

- An important form of mining from relational data involves *market baskets* = sets of “items” that are purchased together as a customer leaves a store.
- Summary of basket data is *frequent item sets* = sets of items that often appear together in baskets.
Example: Market Baskets

- If people often buy hamburger and ketchup together, the store can:
 1. Put hamburger and ketchup near each other and put potato chips between.
 2. Run a sale on hamburger and raise the price of ketchup.

Finding Frequent Pairs

- The simplest case is when we only want to find “frequent pairs” of items.
- Assume data is in a relation Baskets(basket, item).
- The support threshold s is the minimum number of baskets in which a pair appears before we are interested.
Frequent Pairs in SQL

```
SELECT b1.item, b2.item
FROM Baskets b1, Baskets b2
WHERE b1.basket = b2.basket
AND b1.item < b2.item
GROUP BY b1.item, b2.item
HAVING COUNT(*) >= s;
```

Look for two Basket tuples with the same basket and different items. First item must precede second, so we don’t count the same pair twice.

Create a group for each pair of items that appears in at least one basket.

A-Priori Trick --- 1

- Straightforward implementation involves a join of a huge Baskets relation with itself.

- The *a-priori algorithm* speeds the query by recognizing that a pair of items \{i, j\} cannot have support \(s\) unless both \{i\} and \{j\} do.
A-Priori Trick --- 2

- Use a materialized view to hold only information about frequent items.

```sql
INSERT INTO Baskets1(basket, item)
SELECT * FROM Baskets
WHERE item IN (SELECT ITEM FROM Baskets
GROUP BY item
HAVING COUNT(*) >= $s$);  
```

Items that appear in at least s baskets.

A-Priori Algorithm

1. Materialize the view Baskets1.
2. Run the obvious query, but on Baskets1 instead of Baskets.
- Baskets1 is cheap, since it doesn’t involve a join.
- Baskets1 probably has many fewer tuples than Baskets.
 - Running time shrinks with the square of the number of tuples involved in the join.
Example: A-Priori

- Suppose:
 1. A supermarket sells 10,000 items.
 2. The average basket has 10 items.
 3. The support threshold is 1% of the baskets.

- At most 1/10 of the items can be frequent.

- Probably, the minority of items in one basket are frequent -> factor 4 speedup.