Problem F
Find Problem

Input: solution.in
Output: standard output

Normally for a given problem you are asked to find the solution. Here you are required to write a program to find the problem for which the solution is given.
Let \(f = n \) be a proper fraction and \(F = \{ f_1, f_2, \ldots, f_k \} \) be a set of \(k \) distinct unit fractions \(f_i = 1/n_i, i = 1, 2, \ldots, k \), where \(n_i \) (not equal to 1 or \(n \)) is a factor of \(n \) and \(k \) is a suitable integer. Recall that a proper fraction \(f \) is a number of the form \(\alpha/\beta \), where the numerator \(\alpha \) and the denominator \(\beta \) are positive integers and \(1 \leq \alpha < \beta \). A unit fraction is a proper fraction with \(\alpha = 1 \) and \(\beta = 1 \). Since the numerator of each element of \(F \) is 1, the set \(F \) may be identified also by the set \(D = \{ n_1, n_2, \ldots, n_k \} \) of denominators appearing in the elements of \(F \).

Consider the problem: given the set \(F \), find the sum of elements of \(F \) and its solution: the sum \(f \), where \(k \) is a nonnegative integer as large as possible.

Given a solution \(f \) you are required to write a program to find \(F \) or equivalently find \(D \). It should be noted that for a given solution there may exist no problem, exactly one problem or more than one distinct problem. Let \(p \) be the total number of distinct problems for a given solution.

For example if \(f = \frac{13}{12} \) then \(p = 2 \), \(F = \{ \frac{1}{3}, \frac{1}{6}, \frac{1}{12} \} \) or \(\{ \frac{1}{2}, \frac{1}{6}, \frac{1}{8} \} \) and \(D = \{3, 8, 12\} \) or \(\{4, 6, 8\} \).
Again if \(f = \frac{1}{6} \) then \(p = 0 \) since no \(F \) or \(D \) exists for the given \(f \).

Input
The input may contain multiple test cases.
For each test case there are two input lines. The first line contains the case number \(c \) and the second line gives the numerator \(m \) and the denominator \(n \).
The input terminates with an input 0 for \(c \). The input is illustrated in sample input.

Output
For each test case print \(c \), \(k \) and \(p \) in one line, where \(c \) is the test case number, \(k \) is the largest possible number of distinct unit fractions in \(F \) and \(p \) is the total number of distinct problems.
In each of the next \(p \) lines, print a problem represented by \(k \) elements of \(D \). The elements of \(D \) are printed in increasing order of magnitude. The problems are to be arranged in lexicographic order of the elements of \(D \).

Print a blank line between two successive test cases.

<table>
<thead>
<tr>
<th>Sample Input</th>
<th>Sample Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 0 0</td>
</tr>
<tr>
<td>13 18</td>
<td>2 3 2</td>
</tr>
<tr>
<td>2</td>
<td>3 8 12</td>
</tr>
<tr>
<td>13 24</td>
<td>4 6 8</td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>