More on Grammars and Their Languages

Robert M. Keller
Harvey Mudd College
27 April 2005
Notation

- Recall that $x \Rightarrow y$ means that there are strings u, v, v', w such that
 - $x = uvw$,
 - $y = uv'w$,
 - $v \rightarrow v'$ is a production.

- Define \Rightarrow^* to be the reflexive transitive closure of \Rightarrow:
 - $x \Rightarrow^* y$ means ($x = y$ or $\exists z (x \Rightarrow^* z$ and $z \Rightarrow y)$).
What we’re assuming as background

- A language is defined to be regular if it is denoted by some regular expression.

- It has been shown that regular languages are equivalent to languages accepted by non-deterministic finite-state acceptors (NFA’s).

- Every NFA can be converted to a DFA that accepts the same language.

- Summarization: **Kleene’s Theorem** (1956): A language is regular iff it is accepted by a DFA.
A language is regular iff it is generated by some type 3 grammar.

- Type 3 productions are of one of two types:
 - $B \rightarrow \sigma C$, where $B \in A$, $\sigma \in \Sigma$
 - $B \rightarrow \Lambda$

- To prove this result, identify the states of a NFA with auxiliaries in the grammar. Assume a single start state and no Λ-transitions (WLOG).
 - $B \rightarrow \sigma C$ is a production if state B goes to state C via symbol σ.
 - $B \rightarrow \Lambda$ is a production iff B is an accepting state in the NFA.

- The language generated by the grammar is the language generated by the NFA.
- The only way to get rid of the auxiliary in the derived string is to use the production $B \rightarrow \Lambda$, which corresponds to the NFA being in an accepting state.
Example: NFA vs. Grammar

NFA:

Grammar:

- Start symbol is S
- Productions:

 \[
 \begin{align*}
 S &\rightarrow 0S \\
 S &\rightarrow 0C \\
 S &\rightarrow 1B \\
 B &\rightarrow 1S \\
 B &\rightarrow 0C \\
 B &\rightarrow 1C \\
 B &\rightarrow \Lambda \\
 C &\rightarrow 0B \\
 \end{align*}
 \]

- Sample derivation: \(S \Rightarrow 0S \Rightarrow 00C \Rightarrow 000B \Rightarrow 000 \)
Pumping Lemma for Regular Languages

- For any regular language \(L \):

\[
(\exists n \in \mathbb{N}) \ (\forall x \in L) \\
(|x| \geq n) \rightarrow \\
((\exists u \ \exists v \ \exists w) \\
x = uvw \\
\land \ v \neq \Lambda \\
\land \ |uv| \leq n \\
\land \ (\forall m \in \mathbb{N}) \ uv^m w \in L)
\]

Note that \(m = 0 \) is included.
Proof of the Pumping Lemma (1)

- If L is regular, then there is a type 3 grammar G that generates L.
- Let n be the number of auxiliary symbols in G.
- If a string $x_1 x_2 x_3 \ldots x_r$ having length n or more is in the language, then the same auxiliary A was used at least twice in generating that string, with no prior or intervening uses of A

\[
S \Rightarrow x_1B_1 \Rightarrow x_1 x_2B_2 \Rightarrow \ldots \Rightarrow x_1 x_2 \ldots x_iA \Rightarrow \ldots
\Rightarrow x_1 x_2 \ldots x_i x_{i+1} \ldots x_jA \Rightarrow x_1 x_2 x_3 \ldots x_r
\]

(A, B_1, B_2, \ldots are distinct, so there can be at most n)

- Choose $u = x_1 x_2 \ldots x_i$, $v = x_{i+1} \ldots x_j$, $v = x_{j+1} \ldots x_r$ and observe that the desired properties of these strings hold.
Proof of the Pumping Lemma (2)

\[S \Rightarrow x_1B_1 \Rightarrow x_1 x_2 B_2 \Rightarrow ... \Rightarrow x_1 x_2 ... x_i A \Rightarrow ... \]
\[\Rightarrow x_1 x_2 ... x_i x_{i+1} ... x_j A \Rightarrow x_1 x_2 x_3 ... x_r \]

Chose \(u = x_1 x_2 ... x_i, \ v = x_{i+1} ... x_j, \ v = x_{j+1} ... x_r \)

Observe that
\[x = uvw = x_1 x_2 ... x_i x_{i+1} ... x_j x_{j+1} ... x_r \]
\[\land v \neq \Lambda = x_{i+1} ... x_j \]
\[\land |uv| \leq n \ (A B_1 B_2 ... \text{ distinct, at most } n) \]
\[\land (\forall m \in \mathbb{N}) \ uv^m w \in L \ \text{since } A \Rightarrow^* x_{i+1} ... x_j A \]

The distinctness property is a consequence of the pigeonhole principle.
Pigeonhole Principle

- If \(p \) pigeons are placed in \(h \) holes: if \(h < p \), then some hole gets more than one pigeon.

- Contrapositive:
 - If no hole gets more than one pigeon, then \(h \geq p \).

- In our case: The holes correspond to the \(n \) auxiliary symbols, while the pigeons correspond to the instances of those symbols in the derivation. The number of the latter is at least \(n+1 \) for a derivation of a string of length at least \(n \).
Pumping Lemma Example

Grammar:
- $S \rightarrow 1B$
- $B \rightarrow 1C$
- $C \rightarrow 0B$
- $C \rightarrow 1D$
- $D \rightarrow \Lambda$

- Here $n = 4$.
- Consider $11011 \in L$, which has length ≥ 4.
- Derivation is $S \Rightarrow 1B \Rightarrow 11C \Rightarrow 110B \Rightarrow 1101C \Rightarrow 11011D \Rightarrow 11011$
- B is the first repeated auxiliary, $B \Rightarrow^* 10B$.
- $u = 1 \quad v = 10 \quad w = 11$
- $(\forall m \in \mathbb{N}) \ 1(10)^m11 \in L$
- For example: $\{111, 11011, 1101011, 110101011, \ldots\} \subseteq L$.

(NFA for comparison)
Use of the Pumping Lemma

- The main use is to show that certain languages are not regular.

- That is, the n that must exist for a regular language cannot exist for the language in question.
Example of Pumping Lemma Use (1)

- The language \(L = \{0^k1^k \mid k \in \mathbb{N}\} \) is not regular.

- Proof: If \(L \) were regular, then let \(n \) be the number that exists according to the pumping lemma.
 - Let \(x = 0^n1^n \in L \).
 - Let \(u, v, w \) be such that \(x = uvw, v \neq \Lambda, |uv| \leq n \) and \((\forall m \in \mathbb{N}) uv^mw \in L \).
 - Since \(|uv| \leq n \), and \(v \neq \Lambda \), \(v \) must consist of one or more 0’s.
 - But then \(uw \in L \) would have fewer 0’s than 1’s, contradicting the definition of \(L \).
Example of Pumping Lemma Use (2)

- The language \(L = \{1^p \mid p \text{ is prime}\} \) is not regular.

- Proof: If \(L \) were regular, then let \(n \) be the number that exists according to the pumping lemma.

- Let \(x = 1^p \in L \) , where \(p > n \) (since there are infinitely-many primes).

- Let \(u, v, w \) be such that \(x = uvw, v \neq \Lambda, |uv| \leq n \) and \((\forall m \in \mathbb{N}) uv^mw \in L \), according to the pumping lemma.

- Let \(q = |v| > 0, r = |uw| \), so rephrasing, \((\forall m \in \mathbb{N}) 1^r1^{mq} \in L \).

- Since (taking \(m = 0 \)) \(1^r = 1^r1^0q \in L \), we know that \(r > 1 \).

- In particular, for \(m = r \), we have \(1^r1^r = 1^{r(q+1)} \in L \).

- But \(r(q+1) \) cannot be prime, giving a contradiction.
There are languages of type 2 that are not regular.

- \(\{0^n1^n \mid n \in \mathbb{N}\} \) is known to be non-regular.
- But the following type 2 grammar generates it:
 - \(S \rightarrow 0S1 \)
 - \(S \rightarrow \Lambda \)
Abstract States for Any Language
Defining the factoring function /

- Let $L \subseteq \Sigma^*$ be any language.
- For any $x \in \Sigma^*$, define

$$L/x = \{w \in \Sigma^* \mid xw \in L\}$$

- Example: $L = \{x \in \{1\}^* \mid |x| \text{ is a multiple of 3}\}$. Then
 - $L/\Lambda = L$.
 - $L/1 = \{x \in \{1\}^* \mid |x| \text{ mod } 3 = 2\}$.
 - $L/11 = \{x \in \{1\}^* \mid |x| \text{ mod } 3 = 1\}$.
 - $L/111 = \{x \in \{1\}^* \mid |x| \text{ mod } 3 = 0\} = L$.

- Although the number of elements of $\{1\}^*$ is infinite, the number of distinct sets of the form L/x is finite in this case.
Another Example

Example: $L = \{0^n1^n \mid n \in \mathbb{N}\}$. Then

- $L/\Lambda = L$.
- $L/0 = \{0^n1^{n+1} \mid n \in \mathbb{N}\}$.
- $L/1 = \emptyset$.
- $L/00 = \{0^n1^{n+2} \mid n \in \mathbb{N}\}$.
- $L/01 = \{\Lambda\}$.
- $L/11 = \emptyset$.
- $L/10 = \emptyset$.
- $L/000 = \{0^n1^{n+3} \mid n \in \mathbb{N}\}$.
- etc.

In this case, the number of distinct sets of the form L/x is infinite.
Abstract States

- We call the sets L/x for a language L the **abstract states** of the language.

- **Myhill-Nerode Theorem Variant**: A language is regular iff its set of abstract states is finite.
Proof of the Myhill-Nerode Theorem (1)

(⇐) Suppose the set of abstract states of L is finite. Then we can define a (deterministic) finite-state acceptor M for L as follows:
- The states of M are the abstract states of L.
- The initial state is L/Λ.
- L/x is an accepting state iff $\Lambda \in L/x$.
- The next state function is defined by $f(L/x, \sigma) = L/(x\sigma)$.
- We still must show that f is well-defined; that is, the definition does not depend on which x in L/x is chosen for the definition. This is done in the following discussion.
Example: Myhill-Nerode

- $L = \{x \in \{1\}^* \mid |x| \text{ is a multiple of } 3\}$. Then
 - $L/\Lambda = L$.
 - $L/1 = \{x \in \{1\}^* \mid |x| \模 3 = 2\}$.
 - $L/11 = \{x \in \{1\}^* \mid |x| \模 3 = 1\}$.
 - $L/111 = \{x \in \{1\}^* \mid |x| \模 3 = 0\} = L$.

- The following DFA is constructed:

- In defining $f(L/\Lambda, 1) = L/1$, we get the same thing as for $f(L/111, 1), f(L/111111, 1)$, etc. The next state is the same regardless.
Showing f is well-defined

- We claim that f, given by
 \[f(L/x, \sigma) = L/(x\sigma) \]
 is a well-defined function.

- How could it not be?
 - L/x is just a set of strings, and as such, there could be other y ≠ x such that L/x = L/y.

- We need to show it doesn’t matter whether we use x or y, i.e. that if L/x = L/y, then also L/(x\sigma) = L/(y\sigma).
\[\frac{L}{x} = \frac{L}{y} \rightarrow \frac{L}{(x\sigma)} = \frac{L}{(y\sigma)}. \]

- Assume that \(\frac{L}{x} = \frac{L}{y} \) and let \(\sigma \in \Sigma \).
- \(\frac{L}{x} = \{w \in \Sigma^* | xw \in L\} = \{w \in \Sigma^* | yw \in L\} = \frac{L}{y} \).
- Thus for any \(w \), \(xw \in L \leftrightarrow yw \in L \).
- In particular, for \(w \) of the form \(\sigma w' \), where \(w' \) is arbitrary,
 \[x(\sigma w') \in L \leftrightarrow y(\sigma w') \in L. \]
 which is the same as saying \((x\sigma)w' \in L \leftrightarrow (y\sigma)w' \in L \).
- Thus \(\frac{L}{(x\sigma)} = \frac{L}{(y\sigma)} \).
The Myhill-Nerode Equivalence Relation

- Let $L \subseteq \Sigma^*$ be any language.
- Define a binary relation \equiv_L on Σ^* as follows:

 $$x \equiv_L y \text{ iff } L/x = L/y$$

 *(The standard definition uses the equivalent:
 $x \equiv_L y \text{ iff } ((\forall w \in \Sigma^*) \ (xw \in L \iff yw \in L)).$)*

- Example: $L = \{x \in \{1\}^* \mid |x| \text{ is a multiple of } 3\}$:
- Here $\Lambda \equiv_L 111, \ 111 \equiv_L 111111, \text{ etc.}$
- Also, $1 \equiv_L 1111, \ 111 \equiv_L 111111, \text{ etc.}$
- All pairs that have the same length mod 3 are related.
\equiv_L is an Equivalence Relation (for any L)

- Recall \(x \equiv_L y \) on \(\Sigma^* \) is the same as:
 \[L/x = L/y \]

- Reflexive property: \(x \equiv_L x \):
 i.e. \(L/x = L/x \)

- Symmetric property: \(x \equiv_L y \rightarrow y \equiv_L x \):
 i.e. \(L/x = L/y \rightarrow L/y = L/x \)

- Transitive property: \(x \equiv_L y \land y \equiv_L z \rightarrow x \equiv_L z \)
 i.e. \((L/x = L/y \land L/y = L/z) \rightarrow L/x = L/z \)
Equivalence Classes

- Any equivalence relation \(\equiv\) on a set \(S\) induces a set of equivalence classes:

 Subsets \(C\) of \(S\) such that

 \[x, y \in C \text{ iff } x \equiv y.\]

 These subsets are disjoint and their union is \(S\).

- The index of an equivalence relation is its number of equivalence classes.

- In our case, the equivalence classes are exactly the abstract states.
More than an Equivalence Relation

- In addition to being an equivalence relation, \(\equiv_L \) satisfies the property of being a congruence:

\[
x \equiv_L y \rightarrow (\forall \sigma \in \Sigma) \ x\sigma \equiv_L y\sigma
\]

- We proved this in the process of showing that the transition function \(f \) is well-defined.
Proof of the Myhill-Nerode Theorem (2)

(⇒) Suppose L is regular. Then there is a DFA that accepts L.

For each state q of the DFA, define $S(q)$ to be the set of strings that lead from the initial state to q.

For any strings $x, y \in S(q)$, for any string w, $xw \in L$ iff $yw \in L$, since the state q alone determines whether or not $xw \in L$.

Thus any two strings in $S(q)$ are \equiv_L equivalent (but not necessarily conversely).

In other words, each $S(q)$ is a subset of an equivalence class of \equiv_L.

Put another way, each equivalence class is the union of some of the sets $S(q)$.

Hence the number of equivalence classes of L is finite, because the number of states is finite.
Example

- The language accepted is \(L = \{ x \in \{0, 1\}^* \mid \text{the number of 1's is odd} \} \).
- There are two equivalence classes:
 - \(L = \{ x \in \{0, 1\}^* \mid \text{the number of 1's is odd} \} \)
 - \(L' = \{ x \in \{0, 1\}^* \mid \text{the number of 1's is even} \} \)
 - \(L = S(A) \cup S(C) \)
 - \(L' = S(B) \cup S(D) \)
Example, continued

- There are two equivalence classes:
- \(L = \{ x \in \{0, 1\}^* \mid \text{the number of 1's is odd} \} \)
- \(L' = \{ x \in \{0, 1\}^* \mid \text{the number of 1's is even} \} \)
- We can therefore construct the following (smaller, equivalent) DFA:
Example

- The language accepted is \(L = \{x \in \{0, 1\}^* \mid \text{the number of } 1\text{'s is not divisible by } 3\}. \)
- There are three equivalence classes.
- This shows that the language accepted is not necessarily an equivalence class by itself; in general, it will be the union of equivalence classes.
An Alternative to the Pumping Lemma for Showing a Language is not Regular

- If a language can be shown to have an infinite number of equivalence classes, then it is not regular.

Example: $L = \{0^n1^n \mid n \in \mathbb{N}\}$.

- $L/\Lambda = L$.
- $L/0 = \{0^n1^{n+1} \mid n \in \mathbb{N}\}$.
- $L/00 = \{0^n1^{n+2} \mid n \in \mathbb{N}\}$.
- $L/000 = \{0^n1^{n+3} \mid n \in \mathbb{N}\}$.
- etc.
- For every k, $L/0^k = \{0^n1^{n+k} \mid n \in \mathbb{N}\}$ is a distinct class. Hence the number of classes is infinite.
Regular Expression to DFA Directly

- Elsewhere is described the translation from regular expressions to NFA, and from there to DFA.

- The concept of abstract state provides another route.

- If L is given by a regular expression, then for any $\sigma \in \Sigma$, L/σ can be computed symbolically.

- We can do this repeatedly, and check for closure, by testing whether regular expressions are equivalent.
Symbolic Computation of L/σ
(sometimes called the “derivative” of L wrt σ)

- $\emptyset/\sigma = \emptyset$
- $\Lambda/\sigma = \emptyset$
- $\sigma/\sigma = \Lambda$
- $\sigma/\sigma' = \emptyset$ if $\sigma \neq \sigma'$
- $(R \cup S)/\sigma = (R/\sigma \cup S/\sigma)$
- $(RS)/\sigma = (R/\sigma)S$ if $\Lambda \notin L(R)$
- $(RS)/\sigma = (R/\sigma)S \cup S/\sigma$ if $\Lambda \in L(R)$
- $(R^*)/\sigma = (R/\sigma)R^*$

The initial state is that of the regular expression for the language.

The accepting states are those for which $\Lambda \in$ their regular expression.
Example

- Construct a DFA accepting $L(R)$ where $R = (01)^*0$.

- $((01)^*0)/0 = ((01)^*/0)0 \cup 0/0 = 1(01)^*0 \cup \Lambda$
- $((01)^*0)/1 = ((01)^*/1)0 \cup 0/1 = \emptyset$

- $(1(01)^*0 \cup \Lambda)/0 = \emptyset$
- $(1(01)^*0 \cup \Lambda)/1 = (01)^*0$ closure
Example

- Construct a DFA accepting $L(R)$ where $R = (01)^*0$.

- $((01)^*0)/0 = ((01)^*/0)0 \cup 0/0 = 1(01)^*0 \cup \Lambda$
- $((01)^*0)/1 = ((01)^*/1)0 \cup 0/1 = \emptyset$

- $(1(01)^*0 \cup \Lambda)/0 = \emptyset$
- $(1(01)^*0 \cup \Lambda)/1 = (01)^*$

![Diagram of DFA accepting $L(R)$]
Regular Expression from DFA

- Label the States

- Identify each state with the set of paths from the start state to it. This set is a language.

- The language accepted by the FSA is the union of the paths to each of the accepting states, in this case \(L \cup M \).
Deriving Closed Forms

- View the acceptor as a set of regular-expression equations:
 - $L = L_0 \cup M_0 \cup \Lambda$
 - $M = L_1$
 - $N = M_1 \cup N(0 \cup 1)$
 - The Λ is on the RHS of the starting state only.
 - We want to solve for L and M, and take the union of the solutions.
Solving a Regular-Expression Equation

- An equation $X = XA \cup B$ in one variable X has a **solution** $X = BA^*$ (which is unique provided that $\Lambda \notin A$).

 This is called **Arden’s Rule** (Dean Arden, 1960).

- To see this intuitively, repeatedly substitute $XA \cup B$ for X:

 $X = XA \cup B$

 $= (XA \cup B)A \cup B = XAA \cup BA \cup B$

 $= (XA \cup B)AA \cup BA \cup B = XAAA \cup BAA \cup BA \cup B$

 $= B(\{\Lambda\} \cup A \cup AA \cup AAA \cup ...)$

 $= BA^*$

- To see that BA^* is a solution, substitute for X:

 $(BA^*)A \cup B$

 $= B(A^*A \cup \{\Lambda\})$

 $= BA^*$

- (If $\Lambda \in A$, then BA^* is still the minimal solution but it is not unique; $(B \cup C)A^*$, for arbitrary C, is a solution.)
Example

- Consider the equation
 \[X = X \ (0 \cup 11) \cup 1 \]
- The stated solution is \(X = 1(0 \cup 11)* \).
- \(1(0 \cup 11)* \neq 1(0 \cup 11)* \ (0 \cup 11) \cup 1 \\
 = 1((0 \cup 11)* \ (0 \cup 11) \cup \Lambda) \\
 = 1(0 \cup 11)* \)
Example with $\Lambda \in A$

- Consider the equation
 \[X = X (0 \cup \Lambda) \cup 1 \]
- The stated minimal solution is $X = 1(0 \cup \Lambda)^*$
 but $(0 \cup \Lambda)^* = 0^*$, so $X = 10^*$.
- $10^* = 10^*(0 \cup \Lambda) \cup 1$
 \[= 10^*0 \cup 10^* \cup 1 \]
 \[= 10^* \]
- But 1^*0^*, for example, is also a solution:
 $1^*0^* = 1^*0^*(0 \cup \Lambda) \cup 1$
 \[= 1^*0^*0 \cup 1^*0^* \cup 1 \]
 \[= 1^*0^* \]
Solving Systems of RE Equations

- **Solve** for L and M:
 - $L = L_0 \cup M_0 \cup \Lambda$
 - $M = L_1$
 - $N = M_1 \cup N(0 \cup 1)$

- **Substitution** Operation:
 - A LHS variable can be replaced with its RHS, so replacing M in the L equation:
 - $L = L_0 \cup L_10 \cup \Lambda$, or more simply
 - $L = L(0 \cup 10) \cup \Lambda$

- **Elimination** Operation:
 - Using Arden’s rule, $L = LA \cup B$ has the solution $L = BA^*$, so:
 - $L = \Lambda(0 \cup 10)^*$, or more simply $L = (0 \cup 10)^*$

- Substitution again:
 - $M = L_1$
 - $M = (0 \cup 10)^*1$
Conclusion

- The language accepted by the DFA below is
 - \(L \cup M \)
 - which is \((0 \cup 10)^* \cup (0 \cup 10)^*1\)
 - or, by factoring,
 - \((0 \cup 10)^*(\Lambda \cup 1)\)
Summary: DFA ⇒ RE Algorithm

- Express the DFA as a set of RE equations
 - Each state is a variable.
 - Each variable is equated to a union of expressions showing how to get to that state in one step from other states.
 - The start state has Λ on the RHS as well.

- Solve the RE equations for the variables:
 - The variables, along with their equations, are solved for one at a time.
 - Choose a variable for elimination.
 - Expression that variable in terms of the remaining variables only, using the * operator (L = LA ∪ B has the solution L = BA*).
 - Substitute the solution for all occurrences of the variable in the remaining equations.
 - Repeat the above steps until no variables remain.

- Work backward, substituting the solutions found for other variables, until each variable is expressed in closed form.
Another Example

- **Solve:**
 - $L = L1 \cup M0 \cup N0 \cup \Lambda$
 - $M = L0 \cup M1 \cup N1$
 - $N = L1 \cup M1 \cup N0$

 - Note that these equations don’t really correspond to a DFA, but rather an NFA, but it doesn’t matter.
 - Eliminate N, using $N = (L1 \cup M1)0^*$
 - $L = L1 \cup M0 \cup (L1 \cup M1)0^*0 \cup \Lambda$
 - $M = L0 \cup M1 \cup (L1 \cup M1)0^1$

 - Regroup:
 - $L = L(1 \cup 10^*0) \cup M(0 \cup 10^*0) \cup \Lambda$
 - $M = L(0 \cup 10^*1) \cup M(1 \cup 10^*1)$
Solution, continued

- Solving:
 - \(L = L(1 \cup 10*0) \cup M(0 \cup 10*0) \cup \Lambda \)
 - \(M = L(0 \cup 10*1) \cup M(1 \cup 10*1) \)
- Eliminate \(M \) using \(M = L(0 \cup 10*1) (1 \cup 10*1) \), giving:
 - \(L = L(1 \cup 10*0) \cup L(0 \cup 10*1) (1 \cup 10*1)(0 \cup 10*0) \cup \Lambda \)
- Regrouping:
 - \(L = L((1 \cup 10*0) \cup (0 \cup 10*1) (1 \cup 10*1)(0 \cup 10*0)) \cup \Lambda \)
- Solving:
 - \(L = ((1 \cup 10*0) \cup (0 \cup 10*1) (1 \cup 10*1) (0 \cup 10*0)) \)
- Working backward:
 - \(M = ((1 \cup 10*0) \cup (0 \cup 10*1) (1 \cup 10*1) (0 \cup 10*0)) \)
 - \(N = (L1 \cup M1)0* = ... \)
Summary for Regular Languages

- The following are equivalent:
 - L is denoted by some regular expression.
 - L is accepted by a DFA.
 - L is accepted by an NFA.
 - There is a type 3 grammar generating L.
 - The set of abstract states of L is finite.
 - L is the union of the equivalence classes of a Nerode-Myhill congruence relation of finite index.
Additional Paths to Regularity

- If L and M are regular, so are:
 - LM
 - $L \cup M$
 - L^*
 - $L \cap M$
 - $L - M$
 - L_{reverse}
 - $\text{prefixes}(L)$
 - $\text{suffixes}(L)$
 - $\text{substrings}(L)$
 - $\text{subsequences}(L)$
 - $L^{1/2}$
 - $L/M = \{x \mid (\exists w \in M) \ xw \in L\}$ \hspace{1cm} M regular, or not!
Closure Under Substitution (Homomorphism)

• Suppose that L is a language over Σ.
• By a substitution map, we mean a function that assigns to each element of a string from an alphabet Δ.
• Example: Σ = {0, 1}, Δ = {a, b, c}, s(0) = ab, s(1) = cbaba.

• We can “extend” s to map any language over by simply applying s to the letters in each string in the language and concatenating the results for that string.
• Example: L = {1}*{0}

\[s(L) = \{cbaba\}*\{ab\} \]

• Both type 3 and type 2 languages are closed under homomorphism.
Grammars vs. Regular Expressions

- Every regular expression also corresponds to some type 2 grammar in a natural way, but not conversely. (The connection to a type 3 grammar is through Kleene’s theorem.)

- Each sub-expression is identifiable with an auxiliary or a terminal symbol. The productions are:
 - $R \rightarrow ST$ if R is a product of sub-expressions S and T
 - $R \rightarrow S$ and $R \rightarrow T$ if R is a union of sub-expressions S and T
 - $R \rightarrow SR$ and $R \rightarrow \Lambda$ if R is S^*
 - $R \rightarrow \sigma$ if $\sigma \in \Sigma$
 - $R \rightarrow \Lambda$ if R is Λ
 - None if R is \emptyset
Example

- **Regular expression:** $0((10)^* \cup 01)^*$
 - $R \to ST$
 - $R = 0((10)^* \cup 01)^* = ST$
 - $S \to 0$
 - $S = 0$
 - $T \to VT$
 - $T = ((10)^* \cup 01)^* = V^*$
 - $T \to \Lambda$
 - $V \to W$
 - $V = (10)^* \cup 01 = W \cup X$
 - $V \to X$
 - $W \to YW$
 - $W = (10)^* = Y^*$
 - $W \to \Lambda$
 - $Y \to 10$
 - $Y = 10$
 - $X \to 01$
 - $X = 01$

- Note the connection with language equations.
There are languages that are type 1 but not type 2.

- \(\{a^k b^k c^k \mid n \in \mathbb{N}, n > 0\} \) can be shown to be type 1. However, there is no type 2 grammar that generates it.

- This is due to the **pumping lemma for context-free languages**.

- Before presenting this, we need to review **derivation trees**.
Pumping Lemma for Context-Free Languages
Derivation Tree Visualization

\[A \rightarrow V \mid V + A \]
\[V \rightarrow a \mid b \mid c \]

Terminal string = “fringe” of tree = “c + a + b”
Derivation Tree Advantage

- The derivation tree has the advantage over linear derivations using \Rightarrow.

- Many different derivations can be shown using a single tree.

- These derivations are, in some sense, equivalent.

- Exercise: List all derivations corresponding to the tree on the previous page.
Pumping Lemma for Context-Free Languages

Let L be a context-free language. Then there is a number n such that

if \(u \in L \) and \(|u| > n\) then there are strings \(v, w, x, y, z \), such that

- \(u = vwxyz \)
- \(|wy| > 0\) (at least one of \(w \) or \(y \) is non-empty)
- \(|wxy| \leq n\)
- \((\forall m \geq 0) \ v \ w^m \ x \ y^m \ z \in L\)
Proof that \(\{a^k b^k c^k \mid k \in \mathbb{N}, k > 0\} \) is not context-free using the pumping lemma

- Suppose \(\{a^k b^k c^k \mid k \in \omega, k > 0\} \) were context-free. Let \(n \) be the integer that exists according to the pumping lemma. Consider \(u = a^n b^n c^n \) and decompose into \(vwxyz \).

- One of \(w \) and \(y \) is not \(\Lambda \). Suppose it’s \(w \). The other case is symmetric. By the PL, \(vw^2xy^2z \) is in \(L \).

- Analyzing the cases for \(w \) as to whether it consists of all of one letter or of two letters, in all cases we get a contradiction.
Proof of the CFL Pumping Lemma

- The most direct proof requires a grammar in **Chomsky Normal Form**: Every production, with one possible exception*, has one of these two forms:
 - $A \rightarrow BC$, where B and C are auxiliaries
 - $A \rightarrow \sigma$, where $\sigma \in \Sigma$

- Every context-free language not containing Λ, is generated by some grammar in Chomsky Normal Form.
- Assume this for now.
Observation

- For a Chomsky Normal Form grammar, the derivation tree is **binary**: each auxiliary node has either:
 - two children, both of which are auxiliary
 - one child, which is terminal
Binary Tree Observation

- The **height** of a binary tree is defined as the number of nodes from the root to the longest path.
- A binary tree with height $p+1$ has at most 2^p leaves.
- A binary tree with at least 2^p leaves has height at least $p+1$.
- **Examples:**
 - Height 1, 1 leaf
 - Height 2, 2 leaves
 - Height 3, 4 leaves
 - Height 4, 8 leaves
Proof of the Pumping Lemma (1)

- Suppose \(L \) is an infinite context-free language, and \(G \) is a Chomsky-Normal Form grammar for \(L \).
- Let \(p \) be the number of auxiliary symbols in \(G \), exclusive of the start symbol.
- We will show that the \(n \) that exists in the PL can be satisfied by \(n = 2^{p+1} \).

- Let \(u \in L \) be such that \(|u| \geq n\). Then the derivation tree for \(u \) has at least \(2^{p+1} \) leaves, so the height is at least \(p+2 \).

- Consider a maximum length path from leaf to root in this tree. This path has \(> p+1 \) auxiliary nodes, therefore some auxiliary must be repeated. Let \(A_1 \) be the first instance of a repeated auxiliary on the path and \(A_2 \) be the second. Such a repetition must take place in \(\leq p+1 \) nodes.
Proof of the Pumping Lemma (2)

- Here is a picture of our derivation tree:

\[A_1 = A_2 \]

\[\leq p + 1 \]
Proof of the Pumping Lemma (3)

- Choose \(v, w, x, y, z \) as follows:

 \[
 \text{derived string } u = vxwyz
 \]

 \[
 (A \text{ binary tree with height } p+1 \text{ has at most } 2^p \text{ leaves}.)
 \]

 \[
 \text{We see that } |wxy| < 2^p. \text{ Also, } |wy| > 0.
 \]
Example

- $S \rightarrow AC$
- $S \rightarrow AB$
- $C \rightarrow SB$
- $A \rightarrow a$
- $B \rightarrow b$

- **Derivation tree**
 - for
 - $aaabbb$

- **Note:** We can illustrate the principle even though this string is not length 16 or longer.
A Long Path
Repeated auxiliaries
\[u = a \]
\[v = a \]
\[w = ab \]
\[x = b \]
\[y = b \]

Conclusion:
\[\forall k \in \mathbb{N} \quad a \, a^k \, ab \, b^k \, b \in L \]
Non-Closure Under Intersection

- The context-free languages are not closed under intersection.

- These can be shown to be context-free:
 - \{a^k b^k c^m | k, m \in N\}
 - \{a^m b^k c^k | k, m \in N\}

- However, their intersection is:
 - \{a^k b^k c^k | k \in N\}

 which we know is not context free.
Closure Under Intersection with a Regular Language

- If L is context-free and R is regular, then $L \cap R$ is context-free.

- An easy way to see this is to use a machine characterization of context-free languages, which we discuss subsequently.
Non-Closure Under Complementation

- The context-free languages are not closed under complementation.

- This language can be shown to be not context-free (using the pumping lemma):

 \[\{ww \mid w \in \{0, 1\}\}^* \]

- However, the complement:

 \[\{0, 1\}^* - \{ww \mid w \in \{0, 1\}\}^* \]

 is. A grammar for it is given on the next page.
Grammar for $\{0, 1\}^* - \{ww \mid w \in \{0, 1\}^*\}$

$$S \rightarrow AB \mid BA \mid A \mid B$$
$$A \rightarrow CAC \mid 0$$
$$B \rightarrow CBC \mid 1$$
$$C \rightarrow 0 \mid 1$$

- This remains to be shown.
Proof that \(\{ww \mid w \in \{0, 1\}^*\} \) is not context free.

- If this language were context free, so would its intersection with a regular language be.

- If we intersect with the regular language \(\{0\}^*\{1\}^*\{0\}^*\{1\}^* \), we get a language where all strings are of the form:

 \[
 0^r 1^s 0^r 1^s
 \]

 Let \(n \) be the number that exists by the pumping lemma. Select \(u = 0^n 1^n 0^n 1^n \) and decompose \(u \) in \(uvwxy \) where \(|vx| > 0 \) and \(|vwx| \leq n \).

- Show that \(uv^2wx^2y \) cannot be of the form \(0^r 1^s 0^r 1^s \).