More on Program Logic

Robert Keller
21 February 2005
Making the “Triples” Method More Readable

- We could represent derivation of a program triple line-by-line, as in natural deduction proofs.
- Each line would be either:
 - A logic formula
 - A triple
- and each line would be appropriately justified as a premise, or from previously-derived lines.
- The problem is that lines containing large fragments of program code can become unwieldy.
Full Annotation of Programs

- As an alternative, we can put the logic formulas in-line with program statements.

- The understanding is that each line of the program is preceded and followed by a logic formula that can be justified by the derivation rules.

- The derivations themselves can be traced by a series of logic formulas.
Note on Notation

- In the following, we shall use indentation rather than braces to avoid confusion with the braces that demark logical formulas.
Example

• Previously we derived the triple
 \{x \leq n\} \text{ while}(x < n) \ x := x+1 \ {x = n}\]

• Here is the corresponding program fully annotated:

```plaintext
\{x \leq n\}
\textbf{while}( x < n )
  \{x \leq n \land x < n\}
  \{x < n\}
  \{x+1 \leq n\}
  x := x+1
  \{x < n\}
  \{x \leq n \land \neg(x < n)\}
\{x = n\}
```
Example

- Previously we derived the triple
 \(\{ x = x_0 \land y = y_0 \} \)
 \(\text{if}(x > y) \{ z := x; x := y; y := z; \} \)
 \(\{ x \leq y \land ((x = x_0 \land y = y_0) \lor (y = x_0 \land x = y_0)) \} \)

- Here is the corresponding program fully annotated:
 \(\{ x = x_0 \land y = y_0 \} \)
 \(\text{if}(x > y) \)
 \(\{ x > y \land (x = x_0 \land y = y_0) \} \)
 \(\{ y \leq x \land ((y = x_0 \land x = y_0) \lor (x = x_0 \land y = y_0)) \} \)
 \(z := x; \)
 \(\{ y \leq z \land ((y = x_0 \land z = y_0) \lor (z = x_0 \land y = y_0)) \} \)
 \(x := y; \)
 \(\{ x \leq z \land ((x = x_0 \land z = y_0) \lor (z = x_0 \land x = y_0)) \} \)
 \(y := z; \)
 \(\{ x \leq y \land ((x = x_0 \land y = y_0) \lor (y = x_0 \land x = y_0)) \} \)
 \(\{ x \leq y \land ((x = x_0 \land y = y_0) \lor (y = x_0 \land x = y_0)) \} \)
Requirements for Full Annotation: Pure logic

- Each pair of successive logic formulas at the same level must be a derivable implication.
Requirements for Full Annotation: **Assignment**

- Each *assignment* statement must be preceded by a formula derived from the formula after it, according to the assignment rule.
Requirements for Full Annotation: while statements

- The while statement must be immediately preceded by its loop invariant.

- The while test must be immediately followed by the loop invariant conjoined with the test condition.

- The last line of the body (including annotations) of the while, must be the loop invariant.

- The line following the last line of the body (which is out-dented) must be the conjunction of the loop invariant and the negation of the test condition.
Check for Conformance

\[
\{ x \leq n \} \\
\textbf{while}(x < n) \\
\{ x \leq n \land x < n \} \\
\{ x < n \} \\
\{ x+1 \leq n \} \\
x := x+1 \\
\{ x < n \} \\
\{ x \leq n \land \neg (x < n) \} \\
\{ x = n \}
\]
Requirements for Full Annotation: if statements

- The first line of the “true” branch of an if test must be the formula before the if conjoined with the test condition.

- The first line of the “false” branch of an if test must be the formula before the if conjoined with the negation of the test condition.

- The last line of each branch and the line following the overall if (which is out-dented) must be the same.
Check for Conformance

- \{x = x_0 \land y = y_0\}
 \text{if}(x > y)
 \{x > y \land (x = x_0 \land y = y_0)\}
 \{y \leq x \land ((y = x_0 \land x = y_0) \lor (x = x_0 \land y = y_0))\}
 z := x;
 \{y \leq z \land ((y = x_0 \land z = y_0) \lor (z = x_0 \land y = y_0))\}
 x := y;
 \{x \leq z \land ((x = x_0 \land z = y_0) \lor (z = x_0 \land x = y_0))\}
 y := z;
 \{x \leq y \land ((x = x_0 \land y = y_0) \lor (y = x_0 \land x = y_0))\}
 x \leq y \land ((x = x_0 \land y = y_0) \lor (y = x_0 \land x = y_0))\}
Example: Euclid’s Algorithm for GCD

- All quantities are natural numbers.

\[\{(x = x_0) \land (y = y_0)\} \]

while(x \neq y)

\[
\begin{align*}
\text{if(x > y)} & \\
& x := x - y
\end{align*}
\]

\[
\begin{align*}
\text{else} & \\
& y := y - x
\end{align*}
\]

\[
\{ x = \gcd(x_0, y_0) \}
\]
Step 1: Figure out the Loop Invariant

- This is a creative process that generally can’t be automated.
- However, we know some **boundary conditions**:
 - The loop invariant must be *implied by* the initial assumption, modified by any initialization before the loop.
 - The loop invariant, together with the negation of the test condition, must *imply* the final expectation.
 - The loop invariant must be *preserved by* the loop body, and we can use the added assumption that the test condition is true to establish this.
Step 1: Figure out the Loop Invariant

- For the GCD program, we can scratch around and figure out that:
 \[
 \text{gcd}(x - y, x) = \text{gcd}(x, y) \quad \text{if } x > y
 \]
 \[
 \text{gcd}(x, y - x) = \text{gcd}(x, y) \quad \text{if } y > x
 \]

- We might even be able to prove these (by showing that the pairs
 \{x-y, x\} and \{x, y\} have the same sets of divisors).

- This suggests that the body of the loop \textit{preserves} the value \text{gcd}(x, y).

- Moreover, we can see that the \textit{initial} value of this quantity is that
 of \text{gcd}(x_0, y_0), although we don’t have this quantity in a variable
 \textit{explicitly}.
Euclid’s Algorithm with potential loop invariant

- All quantities are integer.
 \{(x = x_0) \land (y = y_0)\}
 \{\gcd(x, y) = \gcd(x_0, y_0)\}

\textbf{while}(x \neq y)
 \{\gcd(x, y) = \gcd(x_0, y_0) \land x \neq y\}
\textbf{if}(x > y)
 x := x - y
\textbf{else}
 y := y - x
\{\gcd(x, y) = \gcd(x_0, y_0)\}
\{\gcd(x, y) = \gcd(x_0, y_0) \land \neg(x \neq y)\}
\{ x = \gcd(x_0, y_0) \}
Checking Step 1

• Now do a sanity check to see if the formulas obey the proper relationships.

 • \(\{x = x_0 \land y = y_0\} \rightarrow \{ \gcd(x, y) = \gcd(x_0, y_0) \} \)?

 • \(\{ \gcd(x, y) = \gcd(x_0, y_0) \land \neg (x \neq y) \} \rightarrow \{ x = \gcd(x_0, y_0) \} \)?

• If not, interpose additional formulas, or try to fix the invariant.

• Above, we can use the additional fact: \(\gcd(x, x) = x \).
Step 2: Fill in the body formulas

- \{(x = x_0) \land (y = y_0)\}
 \{\gcd(x, y) = \gcd(x_0, y_0)\}

while(x \neq y)
 \{\gcd(x, y) = \gcd(x_0, y_0) \land x \neq y\}

if(x > y)
 \{\gcd(x, y) = \gcd(x_0, y_0) \land x \neq y \land x > y\}
 x := x - y
 \{\gcd(x, y) = \gcd(x_0, y_0)\}

else
 \{\gcd(x, y) = \gcd(x_0, y_0) \land x \neq y \land \neg(x > y)\}
 y := y - x
 \{\gcd(x, y) = \gcd(x_0, y_0)\}
 \{\gcd(x, y) = \gcd(x_0, y_0)\}
 \{\gcd(x, y) = \gcd(x_0, y_0) \land \neg(x \neq y)\}
 \{ x = \gcd(x_0, y_0) \}
Step 3: Fill in any needed connecting formulas

- \{ (x = x_0) \land (y = y_0) \}
- \{ \text{gcd}(x, y) = \text{gcd}(x_0, y_0) \}

\begin{align*}
\text{while}(x \neq y) & \quad \{ \text{gcd}(x, y) = \text{gcd}(x_0, y_0) \land x \neq y \} \\
\text{if}(x > y) & \quad \{ \text{gcd}(x, y) = \text{gcd}(x_0, y_0) \land x > y \} \\
& \quad \{ \text{gcd}(x, y) = \text{gcd}(x_0, y_0) \land x > y \} \\
& \quad \{ \text{gcd}(x-y, x) = \text{gcd}(x_0, y_0) \} \\
& \quad \{ x := x - y \} \\
& \quad \{ \text{gcd}(x, y) = \text{gcd}(x_0, y_0) \} \\
& \quad \{ \text{gcd}(x, y) = \text{gcd}(x_0, y_0) \land x \neq y \} \\
\text{else} & \quad \{ \text{gcd}(x, y) = \text{gcd}(x_0, y_0) \land x < y \} \\
& \quad \{ \text{gcd}(x, y-x) = \text{gcd}(x_0, y_0) \} \\
& \quad \{ y := y - x \} \\
& \quad \{ \text{gcd}(x, y) = \text{gcd}(x_0, y_0) \} \\
& \quad \{ \text{gcd}(x, y) = \text{gcd}(x_0, y_0) \land x = y \} \\
& \quad \{ x = \text{gcd}(x_0, y_0) \}
\end{align*}
Example: Factorial Program
(one of many)

\[
\{ n = n_0 \land n_0 \geq 0 \} \\
\text{f := 1;}
\text{while(n > 0)}
\quad \text{f := f \ast n;}
\quad \text{n := n - 1;}
\{ f = n_0! \}
\]
Arrays

- An array is, in effect, a function.

- Array x[0..n-1] is a function from the set of indices \{0, 1, ..., n-1\} to the domain from which array values are drawn.

- So x[i] can be thought of x(i) (x applied to i).
Sub-Arrays and Index Sets

• Suppose \(x[0..n-1] \) is an array.
• For integers \(r \) and \(s \), where \(r, s \in \{0, \ldots, n-1\} \)
 \([r..s] \) denotes the set of indices \(\{r, r+1, \ldots, s\} \).
• If \(r > s \) then \([r..s] \) is the empty set.
• \(x[r..s] \) denotes the sub-array of \(x \) with indices \([r..s] \).
Example

- If \(x[0..5] \) is the array \([2, 3, 5, 7, 11, 13]\) with indices \([0..5]\)

 then \(x[1..4] \) is the sub-array \([3, 5, 7, 11]\) with indices \([1..4]\).
Proofs of Programs That Use Arrays

• Dichotomy:
 • Arrays are read-only
 • Arrays are modified by assignment
Quantifying over Array Indices

- As before, for any formula φ, $\varphi[j/i]$ means the formula obtained by substituting j for all free occurrences of i in φ.

- $\forall j \in [m..n] \varphi[j/i]$ means that
 $$\varphi[m/i] \land \varphi[(m+1)/i] \land \ldots \land \varphi[n/i]$$

- $\exists j \in [m..n] \varphi[j/i]$ means that
 $$\varphi[m/i] \lor \varphi[(m+1)/i] \lor \ldots \lor \varphi[n/i]$$

- If $m > n$, then the first case is equivalent to true, while the second case is equivalent to false.
Some Properties of Array Reference

- \((\forall j \in [m..n] \varphi[j/i]) \land \varphi[(n+1)/i]) \rightarrow (\forall j \in [m..(n+1)] \varphi[j/i])\)
- \((\forall j \in [m..n] \varphi[j/i]) \land \varphi[(m-1)/i]) \rightarrow (\forall j \in [(m-1)..n] \varphi[j/i])\)
- \((\exists j \in [m..n] \varphi[j/i]) \land \varphi[(n+1)/i]) \rightarrow (\exists j \in [m..(n+1)] \varphi[j/i])\)
- \((\exists j \in [m..n] \varphi[j/i]) \land \varphi[(m-1)/i]) \rightarrow (\exists j \in [(m-1)..n] \varphi[j/i])\)
Example Read-Only Array Program

- Determine whether a specific value \(y \) occurs in the sub-array \(x[m..n] \), using \(= \) comparison.

- \(i := m; \)

 \(\text{occurs} := \text{false}; \)

 \(\text{while}(i \leq n) \)

 \(\text{if}(x[i] = y) \)

 \(\text{occurs} := \text{true}; \)

 \(i := i+1; \)
Specification

• \{m \leq n\}

i := m;

occurs := false;

while(i \leq n)

 if(x[i] = y)

occurs := true;

i := i+1;

\{occurs \leftrightarrow \exists j \in [m..n] \ x[j] = y\} \quad \text{Expectation}

Assumption

Note that we don’t need to anchor the initial array values here, since the array never changes.
Step 1: Determine the Loop Invariant

- \{m \leq n\} \hspace{1cm} \text{Assumption}

i := m;
 \text{occurs} := \text{false};
 \{i \leq n+1 \land \text{occurs} \iff \exists j \in [m..i-1] \ x[j] = y\} \hspace{1cm} \text{Invariant}

while(i \leq n)

 if(x[i] = y)

 \text{occurs} := \text{true};

 i := i+1;

 \{i \leq n+1 \land \text{occurs} \iff \exists j \in [m..i-1] \ x[j] = y\} \hspace{1cm} \text{Invariant}

\{\text{occurs} \iff \exists j \in [m..n] \ x[j] = y\} \hspace{1cm} \text{Expectation}
Step 2: Begin Filling In

- \(\{m \leq n\} \)

 \(i := m; \)

 \(\text{occurs} := \text{false}; \)

 \(\{i \leq n+1 \land \text{occurs} \leftrightarrow \exists j \in [m..i-1] \ x[j] = y\} \)

 while (i \leq n)

 \(\{i \leq n \land i \leq n+1 \land \text{occurs} \leftrightarrow \exists j \in [m..i-1] \ x[j] = y\} \quad \leftarrow \)

 if (x[i] = y)

 \(\text{occurs} := \text{true}; \)

 \(i := i+1; \)

 \(\{i \leq n+1 \land \text{occurs} \leftrightarrow \exists j \in [m..i-1] \ x[j] = y\} \)

 \(\{\neg (i \leq n) \land i \leq n+1 \land \text{occurs} \leftrightarrow \exists j \in [m..i-1] \ x[j] = y\} \quad \leftarrow \)

 \(\{\text{occurs} \leftrightarrow \exists j \in [m..n] \ x[j] = y\} \)
Step 2: Continue Filling In

- \{m \leq n\}
 i := m;
 occurs := false;
 \{i \leq n+1 \land occurs \iff \exists j \in [m..i-1] \ x[j] = y\}
 while(i \leq n)
 \{i \leq n \land i \leq n+1 \land occurs \iff \exists j \in [m..i-1] \ x[j] = y\}
 \{i \leq n \land occurs \iff \exists j \in [m..i-1] \ x[j] = y\}
 \{\ x[i] = y \}
 \{x[i] = y \land i \leq n \land occurs \iff \exists j \in [m..i-1] \ x[j] = y\}
 occurs := true;
 i := i+1;
 \{i \leq n+1 \land occurs \iff \exists j \in [m..i-1] \ x[j] = y\}
 \{\neg (i \leq n) \land i \leq n+1 \land occurs \iff \exists j \in [m..i-1] \ x[j] = y\}
 \{i = n+1 \land occurs \iff \exists j \in [m..i-1] \ x[j] = y\}
 \{occurs \iff \exists j \in [m..n] \ x[j] = y\}
Step 2: Still More Filling In

- $\{m \leq n\}$
 $i := m$;
 $\{i \leq n+1 \land \text{false} \iff \exists j \in [m..i-1] \ x[j] = y\}$

occurs := false;
$\{i \leq n+1 \land \text{occurs} \iff \exists j \in [m..i-1] \ x[j] = y\}$

while($i \leq n$)
 $\{i \leq n \land i \leq n+1 \land \text{occurs} \iff \exists j \in [m..i-1] \ x[j] = y\}$
 $\{i \leq n \land \text{occurs} \iff \exists j \in [m..i-1] \ x[j] = y\}$
 if($x[i] = y$)
 $\{x[i] = y \land i \leq n \land \text{occurs} \iff \exists j \in [m..i-1] \ x[j] = y\}$
 $\{i \leq n \land \text{true} \iff \exists j \in [m..i] \ x[j] = y\}$
 occurs := true;
 $\{i+1 \leq n+1 \land \text{occurs} \iff \exists j \in [m..i+1-1] \ x[j] = y\}$
 $i := i+1$;
 $\{i \leq n+1 \land \text{occurs} \iff \exists j \in [m..i-1] \ x[j] = y\}$
 $\{\neg (i \leq n) \land i \leq n+1 \land \text{occurs} \iff \exists j \in [m..i-1] \ x[j] = y\}$
 $\{i = n+1 \land \text{occurs} \iff \exists j \in [m..i-1] \ x[j] = y\}$
 $\{\text{occurs} \iff \exists j \in [m..n] \ x[j] = y\}$
Step 2: Still\(^2\) More Filling In

- \{m \leq n\}
 \{m \leq n+1 \land \text{false} \iff \exists j \in [m..m-1] x[j] = y\}

 \textbf{i := m;}
 \{i \leq n+1 \land \text{false} \iff \exists j \in [m..i-1] x[j] = y\}

\textbf{occurs := false;}
\{i \leq n+1 \land \text{occurs} \iff \exists j \in [m..i-1] x[j] = y\}

\textbf{while(i \leq n)}

 \{i \leq n \land i \leq n+1 \land \text{occurs} \iff \exists j \in [m..i-1] x[j] = y\}
 \{i \leq n \land \text{occurs} \iff \exists j \in [m..i-1] x[j] = y\}

 \textbf{if(x[i] = y)}

 \{x[i] = y \land i \leq n \land \text{occurs} \iff \exists j \in [m..i-1] x[j] = y\}
 \{i \leq n \land \text{true} \iff \exists j \in [m..i] x[j] = y\}

 \textbf{occurs := true;}
 \{i \leq n \land \text{occurs} \iff \exists j \in [m..i] x[j] = y\}

 \{i+1 \leq n+1 \land \text{occurs} \iff \exists j \in [m..i+1-1] x[j] = y\}

 \textbf{i := i+1;}

 \{i \leq n+1 \land \text{occurs} \iff \exists j \in [m..i-1] x[j] = y\}

\{-\left(i \leq n\right) \land i \leq n+1 \land \text{occurs} \iff \exists j \in [m..i-1] x[j] = y\}
\{i = n+1 \land \text{occurs} \iff \exists j \in [m..i-1] x[j] = y\}
\{\text{occurs} \iff \exists j \in [m..n] x[j] = y\}
Conclusion

- \{m \leq n\}
 \{m \leq n+1 \land \text{false} \iff \exists j \in [m..m-1] \ x[j] = y\}
 \ i := m; \\
 \{i \leq n+1 \land \text{false} \iff \exists j \in [m..i-1] \ x[j] = y\}

occurs := false;
\{i \leq n+1 \land \text{occurs} \iff \exists j \in [m..i-1] \ x[j] = y\}

while(i \leq n)
 \{i \leq n \land i \leq n+1 \land \text{occurs} \iff \exists j \in [m..i-1] \ x[j] = y\}
 \{i \leq n \land \text{occurs} \iff \exists j \in [m..i-1] \ x[j] = y\}
 \textbf{if}(x[i] = y)
 \{x[i] = y \land i \leq n \land \text{occurs} \iff \exists j \in [m..i-1] \ x[j] = y\}
 \{i \leq n \land \text{true} \iff \exists j \in [m..i] \ x[j] = y\}
 \textbf{occurs := true;}
 \{i \leq n \land \text{occurs} \iff \exists j \in [m..i] \ x[j] = y\}
 \{i \leq n \land \text{occurs} \iff \exists j \in [m..i] \ x[j] = y\}
 \{i+1 \leq n+1 \land \text{occurs} \iff \exists j \in [m..i+1-1] \ x[j] = y\}
 \ i := i+1;
 \{i \leq n+1 \land \text{occurs} \iff \exists j \in [m..i-1] \ x[j] = y\}
 \{\neg (i \leq n) \land i \leq n+1 \land \text{occurs} \iff \exists j \in [m..i-1] \ x[j] = y\}
 \{i = n+1 \land \text{occurs} \iff \exists j \in [m..i-1] \ x[j] = y\}
 \{\text{occurs} \iff \exists j \in [m..n] \ x[j] = y\}
Exercise: Optimized Version of the Previous Program

- Determine whether a specific value \(y \) occurs in the sub-array \(x[m..n] \), using = comparison.

- \(i := m; \)
 \(\text{occurs} := \text{false}; \)
 \(\text{while}(\neg \text{occurs} \land i \leq n) \)
 \(\text{if}(x[i] = y) \)
 \(\text{occurs} := \text{true}; \)
 \(i := i+1; \)
Example Read-Only Array Program

- Find the index of a maximal value in the sub-array \(x[m..n] \), using > comparison.

- \(\{m \leq n\} \)

 \[
 \begin{align*}
 k &:= m; \\
 i &:= m+1; \\
 \text{while}(i \leq n) & \\
 \quad \text{if}(x[i] > x[k]) & \\
 \quad \quad k := i; \\
 \quad i := i+1;
 \end{align*}
 \]

- \(\forall j \in [m..n] \ x[j] \leq x[k] \)

Assumption

Expectation

Note that we don’t need to anchor the initial array values here, since the array never changes.
Step 1: Find the loop invariant

- \{m \leq n\}

k := m;
 i := m+1;
 \{\forall j \in [m..i-1] \; x[j] \leq x[k] \land (i \leq n+1)\}

 \textbf{while} (i \leq n)

 \begin{align*}
 \text{if} (x[i] > x[k]) \\
 k := i;
 \end{align*}

 i := i+1;

 \{\forall j \in [m..i-1] \; x[j] \leq x[k] \land (i \leq n+1)\}

 \{\forall j \in [m..n] \; x[j] \leq x[k]\}
Step 2: Begin Filling In

- \(\{m \leq n\} \)

 \(k := m; \)

 \(i := m+1; \)

 \(\{\forall j \in [m..i-1] \ x[j] \leq x[k] \land (i \leq n+1)\} \)

 while (i \leq n)

 \(\{\forall j \in [m..i-1] \ x[j] \leq x[k] \land (i \leq n+1) \land (i \leq n)\} \)

 if (x[i] > x[k])

 \(k := i; \)

 \(i := i+1; \)

 \(\{\forall j \in [m..i-1] \ x[j] \leq x[k] \land (i \leq n+1)\} \)

 \(\{\forall j \in [m..n] \ x[j] \leq x[k]\} \)
Step 2: More Filling In

- \(\{m \leq n\} \)
 \(k := m; \)
 \(\forall j \in [m..m+1-1] \ x[j] \leq x[k] \land (m+1 \leq n+1) \)
 \(i := m+1; \)
 \(\forall j \in [m..i-1] \ x[j] \leq x[k] \land (i \leq n+1) \)
 \(\text{while}(i \leq n) \)
 \(\forall j \in [m..i-1] \ x[j] \leq x[k] \land (i \leq n+1) \land (i \leq n) \)
 \(\text{if}(x[i] > x[k]) \)
 \(k := i; \)
 \(\forall j \in [m..i+1-1] \ x[j] \leq x[k] \land (i+1 \leq n+1) \)
 \(i := i+1; \)
 \(\forall j \in [m..i-1] \ x[j] \leq x[k] \land (i \leq n+1) \)
 \(\forall j \in [m..i-1] \ x[j] \leq x[k] \land (i \leq n+1) \land \neg(i \leq n) \)
 \(\forall j \in [m..n] \ x[j] \leq x[k] \)
Step 2: More\(^2\) Filling In

- \{m \leq n\}
 - \k := m;
 \{\forall j \in [m..m] \ x[j] \leq x[k] \land (m \leq n)\}
 \{\forall j \in [m..m+1-1] \ x[j] \leq x[k] \land (m+1 \leq n+1)\}
 - i := m+1;
 \{\forall j \in [m..i-1] \ x[j] \leq x[k] \land (i \leq n+1)\}
 \textbf{while}(i \leq n)
 \{\forall j \in [m..i-1] \ x[j] \leq x[k] \land (i \leq n+1) \land (i \leq n)\}
 \textbf{if}(x[i] > x[k])
 \k := i;
 \{\forall j \in [m..i] \ x[j] \leq x[k] \land (i \leq n)\}
 \{\forall j \in [m..i] \ x[j] \leq x[k] \land (i \leq n)\}
 \{\forall j \in [m..i+1-1] \ x[j] \leq x[k] \land (i+1 \leq n+1)\}
 - i := i+1;
 \{\forall j \in [m..i-1] \ x[j] \leq x[k] \land (i \leq n+1)\}
 \{\forall j \in [m..i-1] \ x[j] \leq x[k] \land (i \leq n+1) \land \neg(i \leq n)\}
 \{\forall j \in [m..n] \ x[j] \leq x[k]\}
Step 2: More3 Filling In

\begin{itemize}
 \item \{m \leq n\}
 \begin{align*}
 k & := m; \\
 \{\forall j \in [m..m] \ x[j] \leq x[k] \land (m \leq n)\} \\
 \{\forall j \in [m..m+1-1] \ x[j] \leq x[k] \land (m+1 \leq n+1)\}
 \end{align*}

 \begin{align*}
 i & := m+1; \\
 \{\forall j \in [m..i-1] \ x[j] \leq x[k] \land (i \leq n+1)\}
 \end{align*}

 while(i \leq n)
 \begin{align*}
 \{\forall j \in [m..i-1] \ x[j] \leq x[k] \land (i \leq n+1) \land (i \leq n)\} \\
 \text{if(x[i] > x[k])}
 \begin{align*}
 \{\forall j \in [m..i] \ x[j] \leq x[i] \land (i \leq n)\} \\
 k & := i; \\
 \{\forall j \in [m..i] \ x[j] \leq x[k] \land (i \leq n)\} \\
 \end{align*}
 \{\forall j \in [m..i] \ x[j] \leq x[k] \land (i \leq n)\}
 \end{align*}

 \begin{align*}
 \{\forall j \in [m..i] \ x[j] \leq x[k] \land (i+1 \leq n+1)\}
 \end{align*}

 \begin{align*}
 i & := i+1; \\
 \{\forall j \in [m..i-1] \ x[j] \leq x[k] \land (i \leq n+1)\}
 \end{align*}

 \begin{align*}
 \{\forall j \in [m..i-1] \ x[j] \leq x[k] \land (i \leq n+1) \land \neg(i \leq n)\}
 \end{align*}

 \{\forall j \in [m..n] \ x[j] \leq x[k]\}
\end{itemize}
Are We Done Yet?

\[
\begin{align*}
\{m \leq n\} \\
\{\forall j \in [m..m] \; x[j] \leq x[m] \land (m \leq n)\} \\
\text{k := m;} \\
\{\forall j \in [m..m] \; x[j] \leq x[k] \land (m \leq n)\} \\
\{\forall j \in [m..m+1-1] \; x[j] \leq x[k] \land (m+1 \leq n+1)\} \\
\text{i := m+1;} \\
\{\forall j \in [m..i-1] \; x[j] \leq x[k] \land (i \leq n+1)\} \\
\text{while(i \leq n)} \\
\{\forall j \in [m..i-1] \; x[j] \leq x[k] \land (i \leq n+1) \land (i \leq n)\} \\
\text{if(x[i] > x[k])} \\
\{\forall j \in [m..i] \; x[j] \leq x[k] \land (i \leq n) \land x[k] < x[i]\} \\
\{\forall j \in [m..i] \; x[j] \leq x[i] \land (i \leq n)\} \\
\text{k := i;} \\
\{\forall j \in [m..i] \; x[j] \leq x[k] \land (i \leq n)\} \\
\{\forall j \in [m..i] \; x[j] \leq x[k] \land (i \leq n)\} \\
\{\forall j \in [m..i+1-1] \; x[j] \leq x[k] \land (i+1 \leq n+1)\} \\
\text{i := i+1;} \\
\{\forall j \in [m..i-1] \; x[j] \leq x[k] \land (i \leq n+1)\} \\
\{\forall j \in [m..i-1] \; x[j] \leq x[k] \land (i \leq n+1) \land -(i \leq n)\} \\
\{\forall j \in [m..n] \; x[j] \leq x[k]\}
\end{align*}
\]
Assignment to Arrays

- A way to think about arrays in terms of assignment, such as

\[x[i] := 5 \times x[i-1]; \]

is **as if**:

- The assignment installs a **new** function as the value of the variable \(x \).
What is this new function?

- The function x before the assignment had values:
 $$x[j] = x_0[j]$$
 for each j

- The function x after the assignment
 $$x[i] := E;$$

has values:

$$x[j] = (j = i) \ ? E : x_0[j]$$
 for each j
Array-Update Shorthand Notation

- Let x be an array. By

 \[x(i:V) \]

 we mean the array that is like x, except that \(x[i] \) has been replaced with value V.

- In other words

 \[
 x(i:V)[j] = \begin{cases}
 V & \text{if } j = i \\
 x[j] & \text{if } j \neq i
 \end{cases}
 \]
Some Axioms for Array Update Notation

- $x(i:V)[i] = V$
- $j \neq i \rightarrow x(i:V)[j] = x[j]$
- $x(i:V)(i:V') = x(i:V')$
- $j \neq i \rightarrow x(i:V)(j:W) = x(j:W)(i:V)$
Example Using in a Proof Rule

- \{??\} \ x[5] := 99; \{\forall j (j > 5 \rightarrow x[j] \leq 100)\}

- According to the assignment rule,

 ?? is \ \forall j (j > 5 \rightarrow x(5:99)[j] \leq 100)

 which is seen to be implied by

 \forall j (j > 4 \rightarrow x[j] \leq 100)) \quad \text{since } 99 \leq 100
Assignment Rule for Arrays in Hein

- $\{\varphi'\} \ x[i] = E; \ \{\ \varphi\ \}$

where

φ' is like φ except

Any occurrence of expression $x[i]$ (the LHS) in φ is replaced with expression E.

Any occurrence of $x[j]$ where j is not the variable i is replaced with $(j = i) \ ? E : x[j]$.

Example (illustrates both cases)

 Identify i with 5, x[i] with x[5], E with 99

- ?? is 99 > (6 = 5 ? 99 : x[j])

 (false ? 99 : x[6])

 99 > x[6] when simplified
Example

• \{??\} x[5] := 99; \{\forall j (j > 5 \rightarrow x[j] \leq 100)\}

?? is

\forall j (j > 5 \rightarrow (j = 5 \,?\, 99 : x[j]) \leq 100)

which doesn’t seem as helpful as the one derived earlier, since it is equivalent to:

\forall j (j > 5 \rightarrow (false \,?\, 99 : x[j]) \leq 100)
i.e.

\forall j (j > 5 \rightarrow x[j] \leq 100)
Dis-Allowed Case

- The rule doesn’t allow the array index to be a function of the array itself, as in:

 \[x[x[1]] := 2; \]

- Consider \{??\} \(x[x[1]] = 2; \{x[x[1]] = 2 \}

 \[?? \text{ would be } (j = x[1] ? 2 : x[j])[1] = 2 \]

- But if \(x[1] \) were 1 before assignment, then \(x[1] \) would be 2 after, whereas \?? says that \(x[1] \) must be 2 before the assignment.