Primitive and Partial Recursive Functions

Robert M. Keller
Harvey Mudd College
4 April 2005
What is this?

- An alternate approach to computability, based on numeric functions.

- Sometimes having this alternate viewpoint will be helpful.

- Also, much common terminology is derived from this approach rather than from Turing machines.

- The family of primitive recursive functions is first defined, then partial recursive functions are built on that.
Primitive Recursive Functions

- The set of primitive recursive functions is defined inductively.

- Every function is k-ary, for some $k \geq 0$.

- The domain and co-domain of each function is the set of natural numbers $\{0, 1, 2, 3, \ldots\}$ or k-tuples thereof.
Basis Functions (1 of 3)

- The `zero` function is primitive recursive:

 \[\text{zero}(x) = 0 \]
Basis Functions (2 of 3)

- The projection functions are all primitive recursive:

\[\pi^k_j(x_1, x_2, \ldots, x_k) = x_j \]

for each arity \(k > 1 \) and each \(i, 1 \leq i \leq k \).
Basis Functions (3 of 3)

- The **successor** function is primitive recursive:

\[S(x) = x + 1 \]
Induction Rules (1 of 2)

- The **composition** of primitive recursive functions is primitive recursive:

\[h(x_1, x_2, \ldots, x_k) = \]

\[f(g_1(x_1, x_2, \ldots, x_k), \]
\[g_2(x_1, x_2, \ldots, x_k), \]
\[\ldots \]
\[g_r(x_1, x_2, \ldots, x_k)) \]

for each pair of arities \(k, r \geq 0 \).
Constant Functions

- A consequence of the rules up to this point is that **constant** functions are all primitive recursive:

\[C^k_c(x_1, x_2, \ldots x_k) = c \]

for each natural number c.

This is so because is just a composition of the zero and successor functions:

\[C^k_c(x_1, x_2, \ldots x_k) = S(S(\ldots S(\text{zero}(\pi^k_1(x_1, x_2, \ldots x_k))) \ldots)) \]
Explicit Definition (ED)

- This is a convenient shorthand for stacks of compositions, projections, and constants. We can just use definitions such as:

\[f(x, y, z) = g(h(y, x), 5, k(z, z)) \]

and know that if \(g, h, \) and \(k \) are primitive recursive, so is \(f \), because we can exhibit the corresponding composition of zero, \(S \), and projections to get it.
Explicit Definition (ED)

• \(f(x, y, z) = g(h(y, x), 5, k(z, z)) \)

is equivalent to:

• \(f(x, y, z) = g(h(\pi^3_2(x, y, z), \pi^3_1(x, y, z)), \\
 S(S(S(S(S(zero(\pi^3_1(x, y, z))))))))), \\
 k(\pi^3_2(x, y, z), \pi^3_2(x, y, z)) \)

• ED is also sometimes called ET (Explicit Transformation)
Induction Rules (2 of 2)

- A function f defined from primitive recursive functions b and r by the following primitive recursion pattern is primitive recursive, provided that b and r have the appropriate arity:

$$f(0, x_1, x_2, \ldots x_k) = b(x_1, x_2, \ldots x_k)$$

$$f(n+1, x_1, x_2, \ldots x_k) = r(x_1, x_2, \ldots x_k, n, f(n, x_1, x_2, \ldots x_k))$$
Examples of Primitive Recursive Functions

- $\text{add}(x, y)$: addition
- $\text{mult}(x, y)$: multiplication
- $\text{pred}(x)$: predecessor
- $\text{sub}(x, y)$: proper subtraction
- $\text{mod}(x, y)$: modulus
- $\text{div}(x, y)$: integer division (quotient)
- $\text{sqrt}(x)$: integer square root
rex implementations

- I will demonstrate some of these using explicit definition in rex. This allows the definitions to be tested readily.

- rex does not restrict to natural numbers and does not enforce a primitive recursive formalism, so we have to be careful not to “cheat”.
add implementation in rex

- \(S(n) = n + 1; \) // pretend this definition is built in
- \(\text{add}(0, y) \Rightarrow y; \)
- \(\text{add}(n+1, y) \Rightarrow S(\text{add}(n, y)); \)
- For reference (identify \(b \) and \(r \) above):
 \[
 f(0, x_1, x_2, \ldots x_k) = b(x_1, x_2, \ldots x_k)
 \]
 \[
 f(n+1, x_1, x_2, \ldots x_k) =
 r(x_1, x_2, \ldots x_k, n, f(n, x_1, x_2, \ldots x_k))
 \]
mult implementation

- \(\text{mult}(0, y) \Rightarrow 0; \)

- \(\text{mult}(n+1, y) \Rightarrow \text{add}(y, \text{mult}(n, y)); \)

- For reference (identify \(b \) and \(r \) above):

 \[
 f(0, x_1, x_2, \ldots x_k) = b(x_1, x_2, \ldots x_k)
 \]
 \[
 f(n+1, x_1, x_2, \ldots x_k) = r(x_1, x_2, \ldots x_k, n, f(n, x_1, x_2, \ldots x_k))
 \]
pred (predecessor) implementation

- informally $\text{pred}(y) = y = 0 \text{ ? } 0 : y-1$;

- $\text{pred}(0) \Rightarrow$

- $\text{pred}(n+1) \Rightarrow$
sub implementation

• sub is proper subtraction (aka “monus”):
 If \(a \geq b \), then \(\text{sub}(a, b) = a - b \).
 If \(a < b \), then \(\text{sub}(a, b) = 0 \).

• \(\text{sub}(y, 0) \Rightarrow \)

• \(\text{sub}(y, n+1) \Rightarrow \)
Primitive Recursive *Predicates*

- For some definitions we want to have predicates, which we can equate to functions that return only values 0 (false) and 1 true.
 - \(\text{sgn}(0) \rightarrow 0 \);
 - \(\text{sgn}(n+1) \rightarrow 1 \);
 - \(\text{sgn} \) converts arbitrary values to \(\{0, 1\} \).
Negation

- not(0) => 1;
- not(n+1) => 0;
Equality Predicate

- eq(x, y) = not(add(sub(x, y), sub(y, x)));
if-then-else function

- ifthenelse(0, x, y) => y;
- ifthenelse(n+1, x, y) => x;
mod and div

- \(\text{mod}(0, y) \Rightarrow 0; \)
- \(\text{mod}(n+1, y) \Rightarrow \text{ifthenelse}(\text{eq}(S(\text{mod}(n, y)), y), 0, S(\text{mod}(n, y))); \)
- \(\text{div}(0, y) \Rightarrow 0; \)
- \(\text{div}(n+1, y) \Rightarrow \text{ifthenelse}(\text{eq}(S(\text{mod}(n, y)), y), S(\text{div}(n, y)), \text{div}(n, y)); \)
Pragmatic Perspective

• Primitive recursive functions are functions that can be defined using only **definite iteration** (e.g. the equivalent of a for-loop with upper bound predetermined)

and **not** requiring indefinite iteration (while-loops) or the full power of recursion.

• Primitive recursion *as given* is **not** a special case of **tail recursion**, although there is an equivalent version that is.

• The standard version of primitive recursion is “top-down”, whereas tail-recursion is “bottom-up”.
Primitive Recursion = Definite Iteration

- The function f defined in the primitive recursion scheme can be computed by the following for-loop:

```plaintext
// To compute acc == f(n, x_1, x_2, \ldots x_k)
// where f is defined by primitive recursion
// from b and r
acc := b(x_1, x_2, \ldots x_k);

for( j := 0; j < n; j++ )
{
    acc := r(x_1, x_2, \ldots x_k, j, acc);
}
```
Proof by Invariant

- The function f defined in the primitive recursion scheme can be computed by the following for-loop:

```plaintext
// To compute acc == f(n, x_1, x_2, \ldots x_k)
// where f is defined by primitive recursion
// from b and r

acc := b(x_1, x_2, \ldots x_k);

for( j := 0; j < n; j++ )
    invariant: acc = f(j, x_1, x_2, \ldots x_k)
    {
        acc := r(x_1, x_2, \ldots x_k, j, acc);
    }
```
Tail-Recursion Theorem

- The function $f(n, x_1, x_2, \ldots, x_k)$ defined by primitive recursion can be computed as $t(n, b(x_1, x_2, \ldots, x_k))$ where t is defined in the following tail-recursion:

 \[
 t(0, \text{acc}) \Rightarrow \text{acc};
 \]

 \[
 t(n+1, \text{acc}) \Rightarrow r(x_1, x_2, \ldots, x_k, n, \text{acc});
 \]

- Proof: This version can be “read off” from the previous loop version. The connection to the original primitive recursion was established by the loop invariant.
Example: Factorial

- Primitive-recursive version (uses the primitive-recursion pattern):

 \[
 \begin{align*}
 \text{fac}(0) & \Rightarrow 1; \\
 \text{fac}(n+1) & \Rightarrow \text{mult}(n+1, \text{fac}(n)); \\
 \end{align*}
 \]

- Tail-recursive version (doesn’t use the pattern, but equivalent):

 \[
 \begin{align*}
 \text{fac}_\text{tr}(n) & = \text{t}(n, 1); \\
 \text{t}(0, \text{acc}) & \Rightarrow \text{acc}; \\
 \text{t}(n+1, \text{acc}) & \Rightarrow \text{t}(n, \text{mult}(n+1, \text{acc})); \\
 \end{align*}
 \]
Totality Theorem

• Every primitive recursive function is a total function.

• Two levels of induction are involved:
 • For each individual use of the primitive-recursion pattern, there is an induction to show that \(f \) is defined for all \(n \), assuming that \(b \) and \(r \) are total.

 • Structural induction is used to ascertain that anything defined from the derivation rules is a function.
Computability Theorem

• Every primitive-recursive function is computable by a Turing machine.

• This follows from the Church/Turing thesis.

• It can be shown in significant detail by showing how a Turing machine can be constructed by composing functions using the basis functions and induction rules.
Primitive Recursion

Diagonalization Theorem

• There is a computable function that is not primitive recursive.

• Proof: A Turing machine can effectively enumerate the primitive recursive functions of one argument, by applying the rules in some orderly fashion:

 \[p_0, p_1, p_2, \ldots \]

Then define \(q(x) = p_x(x) + 1 \). This function is clearly total, since each \(p_x \) is, but \(q \) cannot be \(p_k \) for any \(k \).
The Ackermann Hierarchy

- We notice that add and mult have similar definitions.
 - add uses S as a base
 - mult uses add as a base
- We can go on to define exp analogously:
 - exp uses mult as a base
- When does this stop?
- Never, but we quickly reach functions that have very large values for small arguments.
- Ackermann observed that it is possible to diagonalize over this hierarchy.
The Ackermann Hierarchy

- $A_0(m) = S(m)$
- $A_{n+1}(0) = A_n(1)$
- $A_{n+1}(m+1) = A_n(A_{n+1}(m))$
- In effect, $A_{n+1}(m+1) = A_n^m(1)$, the m-fold application of A_n.
- Each function in the list: A_0, A_1, A_2, ... is clearly primitive-recursive.
- Define $A(n, m) = A_n(m)$ (called Ackermann’s Function)
- It can be proved that for any primitive recursive function p of one variable, there is an n such that

$$\forall m \in \mathbb{N} \quad p(m) < A(n, m)$$

- Then the function $q(m) = A(m, m)$ cannot be primitive recursive.
Partial-Recursive Functions

- These extend the primitive recursive functions by using the “μ operator”.

- They are sometimes therefore called the μ Recursive Functions.
Partial-Recursive Functions

- Start with the primitive-recursive functions as a base.
- Add one more induction rule: If h is a $k+1$ ary partial-recursive function, then f is a $k+1$ ary one:

$$f(x_1, x_2, \ldots, x_{k-1}) = \mu x_k [h(x_1, x_2, \ldots, x_k) = 0]$$

“the least value of x_k such that $h(x_1, x_2, \ldots, x_k) = 0$”,

It is understood that if $h(x_1, x_2, \ldots, y)$ is undefined for any $y <$ the least x_k, then the value of $f(x_1, x_2, \ldots, x_{k-1})$ is also undefined.

- μ is called the “minimalization operator”.
Example of Using the μ Operator

- Suppose we want to compute the integer square root of a number. We could define

$$\text{sqrt}(n) = \mu k \ [\text{sub}(n, \text{mult}(k, k)) = 0]$$

- It turns out that this particular use of μ is **not essential**; sqrt can be computed by primitive-recursive means. Still, it is convenient.
Example of Non-Total Functions Using μ Operator

• Consider

$$\text{diverge}(n) = \mu k \ [\text{sub}(k+1, k) = 0]$$

$\text{diverge}(n)$ is undefined for all n.

• Consider

$$\text{strange}(m, n) = \mu k \ [\text{not}(\text{eq}(k+m, n)) = 0]$$
Note on μ Operator and Ackermann

- It is not obvious why the μ operator would give us a way to compute Ackermann’s function.

- The “double-recursion” equations given for Ackermann’s function actually fit within a different formalism, Herbrand-Gödel-Kleene general recursive functions (GRF) rather than the partial recursive functions. [The formalism is similar to a set of rex definitions over functions on the natural numbers.]

- The two formalisms are equivalent, but this is often proved in a way that does not make a clear connection that bridges the gap between primitive and partial recursive functions in a manner applicable to Ackermann’s function.
Computability Theorem for Partial-Recursive Functions

• Again we can appeal to the Church-Turing thesis to convince ourselves that the partial-recursive functions are computable partial functions.

• An explicit construction can also be given. Please think about how this could be done.

• It is clear that partial-recursive functions are not always total.
Converse of the Computability Theorem

- Every Turing computable partial function is computable by a partial-recursive function.

- Moreover, the μ operator needs to be used only once to achieve any partial-recursive function.
Importance of the Computability Theorem and its Converse

- Turing-computable partial functions and partial-recursive functions are established as being the same thing.

- One was defined using strings, the other using numbers.
Strings vs. Numbers

- We recognize that natural numbers and strings are equivalent.

- Strings can be enumerated in a straightforward way, for example the strings over a 2-letter alphabet \{a, b\}:

 \[
 \begin{align*}
 0 & \leftrightarrow \Lambda \\
 1 & \leftrightarrow a \\
 2 & \leftrightarrow b \\
 3 & \leftrightarrow aa \\
 4 & \leftrightarrow ab \\
 5 & \leftrightarrow ba \\
 \vdots
 \end{align*}
 \]

- So a *set of numbers* is equivalent to a language (set of strings).
Establishing the Converse

- The converse shows that any Turing-computable partial function is a partial-recursive function.

- To do this involves encoding TM tapes and configurations as numbers.

- Then it can be shown that there are primitive recursive functions that:
 - Simulate a single step of a Turing machine.
 - Tell whether an encoded configuration is halting.
Primitive Recursive Functions for TMs

- $R(x)$ is the encoding of the configuration resulting after 1 step from encoded configuration x.

- $T(i, x)$ is the encoding of the configuration resulting from encoded configuration x after i steps.

- $P(x)$ indicates whether or not an encoded configuration is halting (0 or 1).
Recursive TM equivalents, using μ

- Halting in i steps is expressed by:

$$\mu i \left[P(T(i, x_0)) = 0 \right]$$

- The halting configuration, if any, resulting from x_0 is:

$$T(\mu i \left[P(T(i, x_0)) = 0 \right], x_0)$$
Encodings

• Using primitive recursive functions to encode and decode tapes and configurations requires a lengthy, but interesting, excursion.

• One way (but not the only way) to encode arbitrary sequences of numbers is to use “Gödel numbering”:

Any sequence of natural numbers

\[(x_1, x_2, \ldots, x_k)\]

can be encoded as a single natural number:

\[p_1^{1+x_1} p_2^{1+x_2} \ldots p_k^{1+x_k}\]
Universal Partial-Recursive Functions

• Most results for Turing machines have parallels for the partial-recursive functions.

• The partial-recursive functions are programs that can be coded and **effectively enumerated** just like Turing machines can:

\[
\phi_k^0, \phi_k^1, \phi_k^2, \phi_k^3, \ldots
\]

are the k-ary partial-recursive functions for any fixed k.

• “Effective” here means that there is an algorithm that, given i, can construct ϕ_k^i.
Kleene’s Normal Form Theorem

For each $k > 1$, there exists a 1-ary primitive recursive function U and a $(k+2)$-ary primitive recursive predicate T_k such that

- $\varphi^k_n(x_1, x_2, \ldots, x_k)$ converges iff $(\exists z) \ T(n, x_1, x_2, \ldots, x_k, z)$
- $\varphi^k_n(x_1, x_2, \ldots, x_k) = U(\mu z \ [T(n, x_1, x_2, \ldots, x_k, z) = 0])$

Essentially, T is like the function that tells whether the n^{th} configuration of a TM computation is halting, while U gives the result from that halting configuration.

The numbers z code both the program for the partial recursive function in question and the number of steps.
Universal Partial-Recursive Functions

- For each k, there is a partial-recursive function ψ of $k+1$ variables such that

$$
\psi(n, x_1, x_2, \ldots, x_k) = \varphi^k_n(x_1, x_2, \ldots, x_k)
$$

- ψ is a universal function for k arguments.
Important: Terminology

- Henceforth, Turing-computable and “recursive” are used interchangeably:
 - Partial-recursive function = partial function computable by a Turing machine
 - Recursive function = total function computable by a Turing machine.
- These are not to be confused with “recursive” as used in programming language parlance.
Recursive and Recursively-Enumerable Languages
Recursive Languages

• A language is **recursive** if there is an **always-halting TM** that accepts the language.

• Equivalently, the language has a **total** recursive characteristic function.
Examples of Recursive Languages

- Any finite language
- \{a, b, c\}^*
- \{a^n b^n c^n \mid n \in \mathbb{N}\}
- \{a^n \mid n \in \mathbb{N}, \text{n is prime}\}
- The set of all TM encodings in some fixed alphabet
- The set of all tautologies over some fixed set of proposition symbols
- Any common programming language
Examples of Non-Recursive Languages

- The set of all encodings of TM’s that diverge on a blank tape.

- The set of all encodings of TM’s that halt on a blank tape.
Recursively-Enumerable Languages

- A language is **recursively-enumerable** (abbreviated R.E.) if it is **empty** or the **range** of some **total** recursive function.

- If T is the function, then the language in the non-empty case is \{\text{T}(0), \text{T}(1), \text{T}(2), \ldots\}.

- Note that every **finite** language is recursively enumerable; just build a TM than will return each member at least once for an appropriate argument.
Alternate Characterization

• A language is recursively-enumerable iff it is the **domain** of a **partial**-recursive function.

• By “domain” we mean the set of argument values for which the function **converges**.

• It is obvious that the **empty** language is the domain of the everywhere-undefined partial function. So in the following discussion, we assume that the languages are non-empty.
Proof of the Alternate Characterization

• (⇒) Suppose that L is recursively-enumerable, i.e. is the range of a total recursive function T.

• We want to show that it is also the domain of a partial recursive function P.

• Here’s how P is defined: Given input x, we want to know if there is an n such that x = T(n). Thinking in terms of numeric functions,

\[P(x) = \mu n \ [x = T(n)] \]

• If there is an n such that x = T(n), it will be found by the \(\mu \) operator, since T is total.

• If there is no such n, then P(x) is undefined.
Converse of the Alternate Characterization

• (\leftrightarrow) Suppose that P is a partial-function computed by a Turing machine. Let L be its domain.

• If L is finite, it is recursive and therefore recursively-enumerable, so proceed assuming L is infinite.

• We want to show that there is another TM computing T such that $\{T(0), T(1), \ldots\} = L$ and which always halts.

• To compute $T(n)$, the new TM will simulate an increasing number of computations of the original machine.

• As those computations halt, the new machine increases a count. When the count reaches $n+1$, the new machine outputs the original tape of the corresponding original machine.
Progress of the TM computing T

- Let the set of all input tapes be \(\{x_1, x_2, x_3, \ldots\} \).
 - Simulate 1 step of the computation of \(P(x_1) \).
 - Simulate 1 more step of \(P(x_1) \) and 1 of \(P(x_2) \).
 - Simulate 1 more step of \(P(x_1) \), \(P(x_2) \), and 1 of \(P(x_3) \).

- Continue in this fashion, adding one new simulation at each step. As simulations reach a halting state, a counter \(j \) that was started at 0 is incremented.

- As the computation of some \(P(x_i) \) halts, it drops out and is identified as \(T(j) \).

- Specifically, with \(j \) as input, when \(j+1 \) simulations have halted, \(T(j) \) is output and the derived machine halts.
Dovetailing

- The preceding process is sometimes called “dovetailing”, alluding to dovetailing in strip flooring for example.

```
<table>
<thead>
<tr>
<th>P(x₁₁)₁</th>
<th>P(x₂₁)₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>P(x₁₂)</td>
<td>P(x₂₂)</td>
</tr>
<tr>
<td>P(x₁₃)</td>
<td>P(x₂₃)</td>
</tr>
<tr>
<td>P(x₁₄)</td>
<td>P(x₂₄)</td>
</tr>
<tr>
<td>halt</td>
<td>P(x₂₄)</td>
</tr>
<tr>
<td>P(x₂₅)</td>
<td>halt</td>
</tr>
</tbody>
</table>
|         |        |        |        | ...
```

The second subscript refers to the step number.
Recognition vs. Acceptance

• A language L is **accepted** by M if, for any input string x, M always halts, indicating **whether or not** x ∈ L.

• A language L is **recognized** by M if, for any input string x ∈ L, M always halts accepting, but if x ∉ L, M may either reject explicitly or diverges.

• (**Note**: Some authors may reverse these definitions!!)

• Obviously, acceptance implies recognition, but not necessarily conversely.
Summary of Recursively-Enumerable

These are equivalent:

- \(L \) is recursively-enumerable
- \(L \) is empty or the range of a total recursive function.
- \(L \) is the domain of a partial-recursive function.
- \(L \) is recognized by a Turing machine.
Complementation Theorem

• $L \subseteq \Sigma^*$ is recursive iff L and $\Sigma^* - L$ are recursively enumerable.

• Proof: (\Rightarrow) L recursive means there is an always-halting TM, say M, accepting L. But M also recognizes L, so L is recursively-enumerable.

• If we swap the accepting and rejecting halting states of M, then we have a machine accepting $\Sigma^* - L$, so the latter is also recursively-enumerable.
Complementation Theorem

• Proof: (⇐) Suppose that both L and Σ^*-L are recursively-enumerable. Let M be a machine recognizing L, and N a machine recognizing Σ^*-L.

• We can create a new machine R that simulates both M and N on an input x, interleaving steps of each of them one at a time (as in the dovetailing technique, but with just 2 machines):
 • If M accepts then R accepts.
 • If N accepts, then R rejects.

• Since exactly one of the two must accept, R always halts. Hence R accepts L.
Summary of Recursive and Recursively-Enumerable

• These are equivalent:
 • L is recursive.
 • L is accepted by a Turing machine.
 • Both L and its complement are recursively-enumerable.

• These are equivalent:
 • L is recursively-enumerable
 • L is the range of a total recursive function.
 • L is the domain of a partial-recursive function.
 • L is recognized by a Turing machine.
Decidability

• Equivalent terminology:

 • “Decidable” means the same thing as “recursive”.

 • “Semi-Decidable” means the same thing as “recursively-enumerable”.
Languages of Indices

- Set of indices of Turing machines (equivalently partial-recursive functions) provide a good testing ground for understanding the distinctions between recursive and recursive-enumerable languages.

- Suppose that $\varphi_0^k, \varphi_1^k, \varphi_2^k, \varphi_3^k, \ldots$ is an effective enumeration of all (k-ary) partial recursive functions.
Divergence Notation

• $\varphi(x)\downarrow$ is used to mean that φ is **defined** for argument x.

• $\varphi(x)\uparrow$ is used to mean that φ **diverges** on argument x.
Divergence Problem Re-Cast

• The set $D = \{ j \in \mathbb{N} \mid \varphi_j(j) \uparrow \}$ is not recursively-enumerable; this is the divergence problem.

• Suppose that D were r.e. Then by the alternate characterization, there is a k such that φ_k has D as its domain.

• By definition of D, $k \in D$ iff $\varphi_k(k) \uparrow$.

• But since D is the domain of φ_k, $k \notin D$ iff $\varphi_k(k) \uparrow$, by definition of “domain”.
Halting vs. Divergence

- The set $H = \{ j \mid \varphi_j(j) \downarrow \}$ is recursively-enumerable (why?).

- But H is not recursive; this is the **halting problem**.

- If H were recursive, then so would its complement be.

- But its complement is D on the previous slide, which is not even recursively-enumerable.
The Set of Indices of **Total** Recursive Functions is not Recursively-Enumerable

- Let \(A = \{ j \mid \forall x \; \varphi_j(x) \downarrow \} \).
- Suppose that \(A \) is r.e.
- Let \(T \) be a total recursive function that enumerates \(A \), i.e. \(A = \{ T(0), T(1), \ldots \} \).

Then the function \(T' \) defined by:
\[
\forall j \quad T'(j) = \varphi_{T(j)}(j) + 1
\]
is also **total** and obviously computable (recursive).

- Thus \(T' \) has an index \(k \in A \):
 \[
 T' = \varphi_k
 \]
- But then \(T'(k) = \varphi_k(k) = \varphi_{T(k)}(k) + 1 = T'(k) + 1 \),
 which is contradictory.
Complementary Pairs of Questions about **Index Sets**

<table>
<thead>
<tr>
<th>Set</th>
<th>R.E.?</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convergent on own index</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Divergent on own index</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Convergent on all inputs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Divergent on some input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Convergent on some input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Divergent on all inputs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Convergent on a fixed input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Divergent on a fixed input</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>