Resolution Theorem Proving, Part 3

Robert Keller
21 March 2005
The Need for “Factoring”

- The simple form of resolution (called “binary resolution”) used so far is not quite enough for full generality.

- Consider these clauses:
 - $p(X) \lor p(Y)$
 - $\neg p(U) \lor \neg p(V)$

- There are four ways to resolve these two clauses (e.g. $\{X \leftarrow U\}$). However, no resolvent introduces anything new. In order to make progress, we need to “factor” the clauses.
Factoring

- If there are two or more literals in the same clause that unify, then the result of reducing the clause after applying the mgu is called a factor of the clause.

Example:
- In clause \(p(X) \lor p(Y) \), \(\{X \leftarrow Y\} \) unifies the two literals.
- The reduced form is \(p(Y) \), which is a factor of the original clause.
- Evidently this clause could be replaced with its factor. However, this will not always be the case.
Factoring: Another Example

- In clause
 \[p(X) \lor p(f(Y)) \lor p(f(g(Z))) \lor q(Y) \]
 \{X←f(g(Z)), Y←g(Z)\} unifies the first three literals.

- The corresponding factor is:
 \[p(f(g(Z))) \lor q(g(Z)) \]

- The factor is, however, **less general**, so we **cannot replace**
 the original clause with the factor.
General Resolution of Two Clauses

- Two clauses resolve if:
 - They have a binary resolvent (the simplest kind of resolution, without factoring).
 - One clause and a factor of the other have a binary resolvent.
 - There are factors of the two clauses that have a binary resolvent.

- Since a clause is trivially a factor of itself, we could get by with just the third statement above.
Full Resolution Example

- **Clauses:**
 - \(p(X, Y) \lor p(Y, X) \)
 - \(\neg p(U, V) \lor \neg p(V, U) \)

- **Factors:**
 - \(p(X, X) \)
 - \(\neg p(U, U) \)

- **Resolvent:**
 - \(\bot \)
Full Resolution Example

- **Clauses:**
 1. \(p(X, Y) \lor q(X, Y) \)
 2. \(p(U, V) \lor \neg q(U, g(W)) \)
 3. \(\neg p(f(R), S) \lor \neg p(f(S), g(T)) \)

- **Resolvents:**
 4. \(p(U, V) \lor p(U, g(W)) \) 1, 2 with \(\{X \leftarrow U, Y \leftarrow g(W)\} \)
 5. \(\bot \) 3, 4 with \(\{U \leftarrow f(g(T)), R \leftarrow g(T), S \leftarrow g(T), V \leftarrow g(T), W \leftarrow T\} \)
Subsumption

- A clause C **subsumes** a clause D if there is a substitution θ such that $C\theta \subseteq D$, where we interpret the clauses as **sets** of their literals.

- If a clause D in a set of clauses is subsumed by another clause C **within the set**, then we can delete D from the set without affecting the case of whether the empty clause \bot is derivable.
Subsumption Examples

- $P(X)$ subsumes $P(X) \lor Q(Y)$
 (by the empty substitution $\{\}$).

- $\neg P(X) \lor Q(f(X))$ subsumes
 $\neg P(Z) \lor \neg P(h(Y)) \lor Q(f(h(Y)))$
 (by the substitution $\{X \leftarrow h(Y), Z \leftarrow h(Y)\}$).
Answer Extraction

- Resolution is not just for proving theorems anymore.

- Resolution can be used for extracting answers from a database, knowledge base, or reasoning system.
From Yes-No to Answer Terms

• Consider the clause set:
 - \(\neg\text{man}(X) \lor \text{mortal}(X) \)
 - \(\text{man}(\text{socrates}) \)
 - \(\neg\text{mortal}(\text{socrates}) \)

• Obviously this set is unsatisfiable, and we can obtain a proof by resolution.

• But what if we drop the third clause. The first two clauses are satisfiable, and can be thought of as a “knowledge base”.

• We can ask a question of the knowledge base:

 Name someone who is mortal.
Asking Questions

- To find an individual for X that satisfies a criterion $p(...X...)$, add to the set of clauses the clause:

$$\neg p(...X...) \lor \text{answer}(X)$$

- Then conduct resolution as before, but stop when there is a clause containing only answer literals.
Example: Who is mortal?

1. $\neg \text{man}(X) \lor \text{mortal}(X)$
2. $\text{man}(\text{socrates})$
3. $\neg \text{mortal}(Y) \lor \text{answer}(Y)$
4. $\text{mortal}(\text{socrates})$ resolution 1, 2
5. $\text{answer}(\text{socrates})$ resolution 2, 3
Example: Who is Caroline’s Grandfather?

1. $\neg \text{father}(X, Y) \lor \text{parent}(X, Y)$
2. $\neg \text{father}(X, Y) \lor \neg \text{parent}(Y, Z) \lor \text{grandfather}(X, Z)$
3. $\text{father}(\text{joe}, \text{john})$
4. $\text{father}(\text{john}, \text{caroline})$
5. $\neg \text{grandfather}(X, \text{caroline}) \lor \text{answer}(X)$
6. $\neg \text{father}(X, Y) \lor \neg \text{parent}(Y, \text{caroline}) \lor \text{answer}(X)$
7. $\neg \text{father}(X, Y) \lor \neg \text{father}(Y, \text{caroline}) \lor \text{answer}(X)$
8. $\neg \text{father}(X, \text{john}) \lor \text{answer}(X)$
9. $\text{answer}(\text{joe})$
Answer Extraction in Otter

- Normally Otter searches for the null clause and stops when and if it has produced it.

- If the special literal

 \[
 \$answer(X)
 \]

 appears in a clause, Otter will stop when it finds a clause containing only literals containing \$answer.
Grandfather Example in Otter

- \text{father}(x, y) | \text{parent}(x, y).

- \text{father}(x, y) | -\text{parent}(y, z) | \text{grandfather}(x, z).

\text{father}(joe, john).

\text{father}(john, caroline).

- \text{grandfather}(x, caroline) | $\text{answer}(x)$.
“Logic” Puzzles: Example

Professors Dodds, Stone, and Thom go to their favorite bars for beer. Each prof prefers a different beer (one of Anchor, Bud, and Miller) and frequents a different bar (one of Alice's, Harry's, or Joe's).

Each bar serves a unique beer.

Professor Stone prefers Bud. (Clue 1)

Professor Thom doesn't prefer Miller. (Clue 2)

The prof who prefers Miller frequents Alice's bar. (Clue 3)

The prof who prefers Anchor does not frequent Joe's. (Clue 4)

Which bar does each prof frequent and what beer does each prefer?
Solving

- Determine clause form from clues.

- We will use Otter form, so that Otter can try to solve the puzzle.

- Note: This may look really simple, but it is not always easy to get right.
Define clauses for clues

- prefer(Stone, Bud). % Clue 1
- -prefer(Thom, Miller). % Clue 2
- -prefer(x, Miller) | frequent(x, Alice). % Clue 3
- -prefer(x, Anchor) | -frequent(x, Joe). % Clue 4
Identity Individuals in Various Categories

- prof(Dodds).
 prof(Stone).
 prof(Thom).

- beer(Anchor).
 beer(Bud).
 beer(Miller).

- bar(Alice).
 bar(Harry).
 bar(Joe).
Distribution Requirements

- % Every bar is frequented by some prof.
 - bar(y) | frequent(Dodds, y) | frequent(Stone, y) | frequent(Thom, y).

- % Every beer is preferred by some prof.
 - beer(y) | prefer(Dodds, y) | prefer(Stone, y) | prefer(Thom, y).
Uniqueness Requirements

• % Each bar serves a unique beer.

 -serves(x, y) | -serves(x, z) | y = z.

• % Each prof prefers a unique beer.

 -prefer(x, y) | -prefer(x, z) | y = z.

• % Each prof frequents a unique bar.

 -frequent(x, y) | -frequent(x, z) | y = z.
Answer Clause

Which bars are frequented, and which beers preferred, by which professors?

- frequent(Dodds, x) | - frequent(Stone, y) | - frequent(Thom, z)

| - prefer(Dodds, u) | - prefer(Stone, v) | - prefer(Thom, w) |

| $answer([Dodds, x, u], [Stone, y, v], [Thom, z, w]). |
Otter Solution

\$answer([\text{Dodds, Alice, Miller}],\n[\text{Stone, Joe, Bud}],\n[\text{Thom, Harry, Anchor}]).\$
What if Solution not Unique?

Try removing one or more clues.

Note that Otter will give a disjunctive solution.

\[
\begin{align*}
\text{answer}([\text{Dodds, Harry, Anchor}], \\
[\text{Stone, Joe, Bud}], \\
[\text{Thom, Alice, Miller}]) \\
| \text{answer}([\text{Dodds, Alice, Miller}], \\
[\text{Stone, Joe, Bud}], \\
[\text{Thom, Harry, Anchor}]).
\end{align*}
\]
What if No Solution?

If there is no refutation,
Otter will run out of clauses to create,
or run forever.
Set of Support (sos) Strategy

- A typical clause set to be refuted will involve:
 - A set of clauses known, or thought to be **mutually consistent** (satisfiable), e.g. derived from axioms.
 - A single clause which is derived from the negation of the “theorem” to be proved.

- The sos strategy entails always picking one clause for resolution from the sos, and others from outside the sos.
- Resolvents are added to the sos.
- This is a complete strategy and is the one used by Otter.
Motion Puzzles and Games

- Moves in a motion puzzle or game can often be encoded as logic.

- Resolution can be used to find a solving or winning sequence of moves.
Example: Linear Peg Solitaire
Linear Peg Solitaire Explanation

• Pegs of two colors are shown in their home positions at the top.
• The objective is to completely reverse the pegs, so that each peg’s original home is occupied by a peg of the opposite color.
• Allowable actions:
 • Move: A peg can be moved toward the opposite side by moving into an adjacent empty hole.
 • Jump: A peg can jump toward the opposite side over a peg of the opposite color, provided that there is a hole to receive the jumping peg.
General Form of the Puzzle

- Versions of the puzzle exist for $2n$ pegs (n of each color) and $2n+1$ holes.

- Ideally, each version can be solved.
Peg Game Formulation

- Represent the **state** of the game with two terms.
- Say the pegs are **w** for white, **r** for red.
- Represents the pegs **away from the hole** in either direction as a composition of function symbols.
- The initial state shown is:
 \[s(w(w(w(w(c))))), \; r(r(r(r(c)))) \]
- The second state shown is:
 \[s(r(w(r(w(w(c)))))), \; w(r(r(c))) \]
- c is a dummy constant symbol
Formulating Moves

- **Simple moves (non-jump):**
 - move(s(w(X), Y), s(X, w(Y))) \(\text{(wm)}\)
 - move(s(X, r(Y)), s(r(X), Y)) \(\text{(rm)}\)

- **Jump moves:**
 - move(s(r(w(X)), Y), s(X, r(w(Y)))) \(\text{(wj)}\)
 - move(s(X), w(r(Y))), s(w(r(X)), Y)) \(\text{(rj)}\)
Formulating Reachability

- Initial state:
 \(\text{reachable}(w(w(w(w(c)))), r(r(r(r(c)))))) \)

- State change:
 \(\neg \text{reachable}(X) \lor \neg \text{move}(X, Y) \lor \text{reachable}(Y) \)

- Final state:
 \(\neg \text{reachable}(r(r(r(r(c)))), w(w(w(w(c)))))) \)
Otter Formulation

\[\text{move}(s(w(x), y), s(x, w(y))). \]
\[\text{move}(s(x, r(y)), s(r(x), y)). \]

\[\text{move}(s(r(w(x)), y), s(x, r(w(y))). \]
\[\text{move}(s(x, w(r(y))), s(w(r(x)), y)). \]

\[\text{reachable}(s(w(w(w(w(c)))), r(r(r(r(c)))))). \]
\[\neg\text{reachable}(x) | \neg\text{move}(x, y) | \text{reachable}(y). \]
\[\neg\text{reachable}(s(r(r(r(r(c)))), w(w(w(w(c)))))). \]
Otter proof for 2 pegs of each color

1 [] \(-\text{reachable}(x)\) | \(-\text{move}(x,y)\) | \(\text{reachable}(y)\).
2 [] \(-\text{reachable}(s(r(r(c))),w(w(c))))\).
3 [] \(\text{move}(s(w(x)),y),s(x,w(y)))\).
4 [] \(\text{move}(s(x,r(y)),s(r(x),y)))\).
5 [] \(\text{move}(s(r(w(x))),y),s(x,r(w(y))))\).
6 [] \(\text{move}(s(x,w(r(y))),s(w(r(x)),y)))\).
7 [] \(\text{reachable}(s(w(w(c))),r(r(c))))\).
10 [hyper,4,1,7] \(\text{reachable}(s(r(w(w(c))),r(c))))\).
11 [hyper,10,1,5] \(\text{reachable}(s(w(c)),r(w(r(c))))\).
14 [hyper,11,1,3] \(\text{reachable}(s(c,w(r(w(r(c))))))\).
18 [hyper,14,1,6] \(\text{reachable}(s(w(r(c))),w(r(c))))\).
22 [hyper,18,1,6] \(\text{reachable}(s(w(r(w(r(c)))),c))\).
24 [hyper,22,1,3] \(\text{reachable}(s(r(w(r(c)))),w(c))))\).
26 [hyper,24,1,5] \(\text{reachable}(s(r(c)),r(w(w(c))))\).
28 [hyper,26,1,4] \(\text{reachable}(s(r(r(c)),w(w(c))))\).
29 [binary,28.1,2.1] \$F.$
Otter Proof for 3 pegs of each color

7 [] reachable(s(w(w(w(c)))),r(r(r(c))))).
8 [hyper,7,1,4] reachable(s(r(w(w(w(c)))),r(r(c)))).
12 [hyper,5,1,8] reachable(s(w(w(c))),r(w(r(r(c))))).
16 [hyper,12,1,3] reachable(s(w(c)),w(r(w(r(r(c)))))).
20 [hyper,16,1,6] reachable(s(w(r(w(c))),w(r(r(c))))).
27 [hyper,20,1,6] reachable(s(w(r(w(r(w(c))))),r(c))).
34 [hyper,27,1,4] reachable(s(r(w(r(w(r(c))))),c)).
39 [hyper,34,1,5] reachable(s(r(w(r(w(c)))),r(w(c)))).
44 [hyper,39,1,5] reachable(s(r(w(c))),r(w(r(w(c))))).
51 [hyper,44,1,5] reachable(s(c,r(w(r(w(w(r(c))))))).
57 [hyper,51,1,4] reachable(s(r(c)),w(r(w(r(w(c)))))).
63 [hyper,57,1,6] reachable(s(w(r(r(c))),w(r(w(c))))).
69 [hyper,63,1,6] reachable(s(w(r(w(r(r(c))))),w(c))).
72 [hyper,69,1,3] reachable(s(r(w(r(r(c)))),w(w(c)))).
75 [hyper,72,1,5] reachable(s(r(r(c)),r(w(w(w(w(c))))))).
77 [hyper,75,1,4] reachable(s(r(r(r(c))),w(w(w(w(c))))))
78 [binary,77.1,2.1] $F.$
Pegs vs. Proof Length (# of Moves)

<table>
<thead>
<tr>
<th>Pegs of Each Color</th>
<th>Proof Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>24</td>
</tr>
<tr>
<td>5</td>
<td>35</td>
</tr>
<tr>
<td>n</td>
<td>$n^2 + 2n$</td>
</tr>
</tbody>
</table>
Determining the Move Sequence

- The previous proofs only showed that the puzzle could be solved for those variations.

- The actual move sequence would have to be dug out from the proof steps.

- We can modify the rules so that the move sequence is obtained as a byproduct.
Determining the Move Sequence

- Use function composition to represent accumulated move sequence.
- Revised rules (4-pegs, where specific):
 - move(s(w(x), y), s(x, w(y)), z, wm(z)).
 - move(s(x, r(y)), s(r(x), y), z, rm(z)).
 - move(s(r(w(x)), y), s(x, r(w(y))), z, wj(z)).
 - move(s(x, w(r(y))), s(w(r(x)), y), z, rj(z)).
 - reachable(s(w(w(w(w(c)))), r(r(r(r(c))))), d).
 - -reachable(x, z) | -move(x, y, z, zz) | reachable(y, zz).
 - -reachable(s(r(r(r(r(c)))), w(w(w(w(c))))), z) | $answer(z).
The Move Sequence is Read Inside-Out:

- For 4 pegs of each color:
 \[\text{answer}(r\text{m}(w\text{j}(w\text{m}(r\text{j}(r\text{j}(r\text{m}(w\text{j}(w\text{j}(w\text{j}(w\text{m}(r\text{j}(r\text{j}(r\text{j}(w\text{m}(w\text{j}(w\text{j}(w\text{j}(w\text{m}(r\text{j}(r\text{j}(w\text{m}(r\text{m}(d)))))))))))))))))))))
 \]

- The sequence is:
 \[
 \text{rm wj wj rm rj rj rm wj wj wj wj rm rj rj rj rj wj wj wj rm rj rj wj wj rm}
 \]

- (For this puzzle, the move sequence is coincidentally a palindrome.)
Other Notes on Otter

- Otter can preprocess formulas into clauses for you:
 - Quantifiers as input
 - Automatic prenexing and skolemization

- Otter can automatically determine an sos.
Example from the Mid-Term

- Given:
 - $\forall x \exists y \ R(x, y)$
 - $\forall x \forall y \forall z \ ((R(x, y) \land R(y, z)) \rightarrow R(x, z))$
 - $\forall x \forall y \ (R(x, y) \rightarrow R(y, x))$

To derive:
- $\forall x \ R(x, x)$
Otter Input

formula_list(usable). % use formula_list rather than list

all x (exists y r(x, y)).

all x all y all z ((r(x, y) & r(y, z)) -> r(x, z)).

all x all y (r(x, y) -> r(y, x)).

-(all x r(x, x)).

end_of_list.
Result of Pre-Processing by Otter

\[r(x, f1(x)). \] \%Auto-identified as sos by Otter
\[-r(x, y) \lor -r(y, z) \lor r(x, z). \]
\[-r(x, y) \lor r(y, x). \]
\[-r(c1, c1). \]

Note that $ is Otter’s way of specifying generated Skolem functions and constants.

The original list was:

\[\text{all } x \ (\exists y \ r(x, y)). \]
\[\text{all } x \ \text{all } y \ \text{all } z \ ((r(x, y) \land r(y, z)) \rightarrow r(x, z)). \]
\[\text{all } x \ \text{all } y \ (r(x, y) \rightarrow r(y, x)). \]
\[-(\text{all } x \ r(x, x)). \]
Otter’s Proof of the Midterm Problem

1. \(-r(x,y) \lor -r(y,z) \lor r(x,z)\).
2. \(-r(x,y) \lor r(y,x)\).
3. \(-r(c1,c1)\).
4. \(r(x,f1(x))\).
5. \([\text{hyper}, 4, 2] \ r(f1(x),x)\).
8. \([\text{hyper}, 5, 1, 4] \ r(x,x)\).
9. \([\text{binary}, 8.1, 3.1] \ F\).
Otter Proof Rules and Nomenclature

- binary: means binary resolution
- factoring: is indicated when used
- hyper: means hyper-resolution: resolving multiple clauses in one step.
- paramodulation: a rule for handling equality
- demodulation: use of user-specified equalities
- Knuth-Bendix: a system for pre-processing equality rules
Otter is Not Prolog

- The syntax is different, although Otter has a “Prolog variables” mode.

- Otter has genuine negation.

- Prolog only has “negation as failure”.

- Prolog relies on the “closed world assumption”.