Homework 4

The file hw4.hs on the course web page contains an expanded version of the interpreter we have been looking at in class. Besides more syntactic constructs, this version contains state, output, nondeterminism, and errors all at once; this is reflected in the parameterized return type for the interpreter:

```haskell
newtype All a = All (MyState -> [((String, Err a), MyState)])
```

The given code has several holes which you must fill in for this assignment.

1. [30 points]
 Fill in the definitions of unit, bad and bind.

2. [20 points]
 Fill in the definitions of tick, getStep, out, and both.
 Note: the result of evaluating Out should be Unit.

3. [15 points]
 Fill in the definitions of getRef, setRef, newRef.
 Note: the result of evaluating e1 := e2 should be Unit; the result of evaluating MkRef e should be Ref i for some i.
4. [10 points]
We can add local definitions, let \["v0" :=: e_0, \ldots\] e, where Var \"v0\" is bound to e_0 in e (and so on). Let can be defined as syntactic sugar as follows:

\[
\text{let } v_0 = e_0, \ldots, v_n = e_n \text{ in } e \equiv (\lambda v_0 \ldots \lambda v_n.e) e_0 \ldots e_n
\]

Use the preceding transformation to fill in the interp clause for Let.

5. [30 points]
We can add recursion to this language by introducing a recursive local definition, letrec. This definition can be seen as syntactic sugar for a recursive Let style unfolding as follows:

\[
(\lambda v_0 \ldots \lambda v_n.e)(\lambda u_0.e^*_0) \ldots (\lambda u_n.e^*_n) \leftrightarrow v \quad \text{letrec } v_0 = \lambda u_0.e_0, \ldots, v_n = \lambda u_n.e_n \text{ in } e \leftrightarrow v
\]

where \(e^*_i = \text{letrec } v_0 = \lambda u_0.e_0, \ldots, v_n = \lambda u_n.e_n \text{ in } e_i\).

Implement the interp clause for letrec using the preceding evaluation rule. Note the form of the declarations is restricted to having lambdas on the right-hand side.

6. [20 points]
While \(e_1 e_2\) represents a while–do loop where \(e_1\) is the test condition
and e2 is the body of the loop. Implement the interp clause for While; note that the result of a while loop should be the value Unit. Hint: a While loop can be thought of as syntactic sugar for a LetRec construction.

The last section of hw4.hs contains a number of examples which you should use to test out your code; i.e. your code should correctly evaluate all of the given terms. In particular, the term fibImp, an imperative version of the Fibonacci function, uses both mutable references and While loops.

7. [30 points]
This last question lets you think a little about programming with functions and state.

Mutable references can be used to "memoize" a function, by associating a list of argument/result pairs with the function, as illustrated by the memo term in the examples section of hw4.hs. If f is a function (i.e. a lambda), memo $: f results in a term which behaves like f, but remembers previous applications, so that

Let ['"mf" :=: memo $: f]

(mf $: Con 1 & mf $: Con 2 & mf $: Con 1)
results in f (Con 1) being evaluated once. However, memo does not recursively memoize functions, thus memo $: fib (where fib
is also from the examples section) still has an exponential running time.

Implement the `memorec` term which can be used to define recursively memoized functions. The definition of `fibm` illustrates how `memorec` is intended to be used.

The terms `fib'` and `fibm'` are provided to allow you to easily observe the effects of your memoization efforts.
What the hell are monads?

Monad

1. **Philosophy.** An indivisible, impenetrable unit of substance viewed as the basic constituent element of physical reality in the metaphysics of Leibnitz.
2. **Biology.** A single-celled microorganism, especially a flagellate protozoan of the genus Monas.
3. **Chemistry.** An atom or a radical with valence 1.

[Latin monas, monad-, unit, from Greek, from monos, single. See men-⁴ in Indo-European Roots.]

Monad'

Monad'ic (mə-nəd'ık) or Monad'ic-al adj.
Monad'ic-ally adv.
Monad'ism n.
- Monads are constructions from category theory.

- Category theory is “abstract abstract algebra”.

- Category theorists like to
 - draw diagrams
 - wave their hands
 - elide lots of annoying, little details

- Category theory useful for theoretical computer scientists.

- Sometimes, category theory has more direct CS applications.
Monads

A monad is a type function M and a triple, $\langle \text{map}, \text{unit}, \text{join} \rangle$, where (for all types A, B):

\[
\begin{align*}
\text{map} : (A \to B) &\to MA \to MB \\
\text{unit}_A : A &\to MA \\
\text{join}_A : MMA &\to MA
\end{align*}
\]

and the following diagrams commute:

\[
\begin{align*}
&MMA \xrightarrow{\text{join}_A} MMA \\
&\downarrow \downarrow \downarrow \downarrow \downarrow \\
&MMA \xrightarrow{\text{join}_A} MA \\
&MMA \xrightarrow{\text{join}_A} MA
\end{align*}
\]

\[
\begin{align*}
&M \xrightarrow{\text{unit}_A} MMA \xleftarrow{\text{map(\text{unit}_A)}} M \xrightarrow{\text{id}_M} M \xrightarrow{\text{join}_A} MA \\
&M \xrightarrow{\text{unit}_A} MMA \xleftarrow{\text{map(\text{unit}_A)}} M \xrightarrow{\text{id}_M} MA \\
&M \xrightarrow{\text{unit}_A} MMA \xleftarrow{\text{map(\text{unit}_A)}} M \xrightarrow{\text{id}_M} MA \\
&M \xrightarrow{\text{unit}_A} MMA \xleftarrow{\text{map(\text{unit}_A)}} M \xrightarrow{\text{id}_M} MA
\end{align*}
\]

in other words:

\[
\begin{align*}
\forall x : MMA. \text{join}_A(\text{join}_A(x)) &= \text{join}_A(\text{map(\text{join}_A)}(x)) \\
\forall x : MA. \text{join}_A(\text{unit}_A(x)) &= x = \text{join}_A(\text{map(\text{unit}_A)}(x))
\end{align*}
\]

or more succinctly:

\[
\begin{align*}
\text{join}_A \circ \text{join}_A &= \text{join}_A \circ \text{map(\text{join}_A)} \\
\text{join}_A \circ \text{unit}_A &= \text{id}_M = \text{join}_A \circ \text{map(\text{unit}_A)}
\end{align*}
\]
Concrete Examples— Maybe

data Maybe a = Just a | Nothing

unit :: a -> Maybe a
unit x = Just x

join :: Maybe (Maybe a) -> Maybe a
join (Just x) = x
join Nothing = Nothing

map :: (a -> b) -> Maybe a -> Maybe b
map f (Just x) = Just $ f x
map f Nothing = Nothing
Concete Examples – List

unit :: a -> [a]
unit x = [x]

join :: [[a]] -> [a]
join [[]] = []
join (x:xs) = x++(join xs)

map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs
Kleisli Triple

A construction equivalent to a monad.

A Kleisli triple, \(\langle M, \text{unit}, \text{bind} \rangle\), consists of a type function, \(M\), and two associated functions (for any types \(A, B\))

\[
\text{unit} : A \to MA \quad \text{bind} : (A \to MB) \to MA \to MB
\]

and the following diagrams commute:

\[
\begin{align*}
\text{bind} \circ \text{unit} &\cong \text{id}_M \\
\text{bind} (\text{unit}_A \circ \text{bind} f) &\cong \text{bind} g \circ \text{bind} f
\end{align*}
\]

in other words:

\[
\begin{align*}
\text{bind} \text{unit}_A &= \text{id}_M \\
(\text{bind} f) \circ \text{unit}_A &= f \\
\text{bind} ((\text{bind} g) \circ f) &= (\text{bind} g) \circ (\text{bind} f)
\end{align*}
\]
--- Kleisli Examples

-- Maybe

unit :: a -> Maybe a
unit x = Just x

bind :: (a -> Maybe b) -> Maybe a -> Maybe b
bind f (Just x) = f x
bind f Nothing = Nothing

-- List

unit :: a -> [a]
unit x = [x]

bind :: (a -> [b]) -> [a] -> [b]
bind f [] = []
bind f (x:xs) = f x ++ bind f xs
Equivalence of presentations

Monad, \(M\) and \(\langle\text{map}, \text{unit}, \text{join}\rangle\), implies Kleisli triple, \(\langle M, \text{unit}, \text{bind}\rangle\):

\[
\begin{align*}
\text{unit} &: \ a \to M\ a \\
\text{bind} &: (a \to M\ b) \to M\ a \to M\ b \\
\text{unit} &= \text{unit} \\
\text{bind } f\ x &= \text{join}\ ((\text{map } f)\ x)
\end{align*}
\]

Kleisli triple, \(\langle M, \text{unit}, \text{bind}\rangle\), implies Monad, \(M\) and \(\langle\text{map}, \text{unit}, \text{join}\rangle\):

\[
\begin{align*}
\text{unit} &: \ a \to M\ a \\
\text{join} &: M\ (M\ a) \to M\ a \\
\text{unit} &= \text{unit} \\
\text{join } x &= \text{bind } \text{id}\ x
\end{align*}
\]

\[
\begin{align*}
\text{map} &: (a \to b) \to M\ a \to M\ b \\
\text{map } f\ x &= \text{bind } (\lambda y \to \text{unit } (f\ y))\ x
\end{align*}
\]
Values and Computations

- Useful to distinguish values and computations, e.g. 2 is a value,
 \((x = \text{ref } 1; x := !x + 1; !x))\) is a computation.

- Computations might do many things, e.g. diverge, update state, produce output, etc.

- Monads offer a formal framework for distinguishing values and computations.
 - Each monad represents a different kind of computation.
 - A term of type \(M a\) is a computation of type \(a\).
 - Types tell us which parts of program can cause effects.

- Monads offer an elegant guide for combining pure and impure language features.
Haskell Monad Class

class Monad m where
 return :: a -> m a
 (>>=) :: m a -> (a -> m b) -> m b

It is convenient to switch the order of arguments for bind.

- Notice no constraints on behavior of return and >>=.
- Possible to define "bad" Monad instances.
- Up to programmer to verify instances of return and >>= obey monad laws.
- Laws allow easier reasoning about monadic programs.
Example Haskell Monads

instance Monad Maybe where
 return x = Just x
 (Just x) >>= f = f x
 Nothing >>= f = Nothing

instance Monad [] where
 return x = [x]
 [] >>= f = []
 (x:xs) >>= f = f x ++ (xs >>= f)

newtype State s a = State (s -> (a, s))
instance Monad (State s) where
 return x = State $ \s -> (x, s)
 (State x) >>= f = State $ \s1 ->
 let (v1, s2) = x s1
 State v2 = f v1
 in v2 s2
Monadically lifted functions

We can take non-monadic functions and lift them into any monad.

\[
\text{addM} :: (\text{Num } a, \text{ Monad } m) \Rightarrow m a \to m a \to m a \\
\text{addM } a \ b = a >>= \lambda m \rightarrow b >>= \lambda n \rightarrow \text{return } m + n
\]

Haskell even supplies us with functions:

\[
\text{liftM} :: \text{Monad } m \Rightarrow (a \to b) \to m a \to m b \\
\text{liftM2} :: \text{Monad } m \Rightarrow (a \to b \to c) \to m a \to m b \to m c \\
\text{ap} :: \text{Monad } m \Rightarrow m (a \to b) \to m a \to m b
\]
do notation

Monads are so ubiquitous in Haskell that there is a special syntax:

- `do e` is equivalent to `e`
- `do x <- e` is equivalent to `e >>= \x -> do c`
- `do e` is equivalent to `e >>= _ -> do c`

```haskell
addM a b = do m <- a
            n <- b
            return $ m + n
```